Math, asked by siddharthbhargava, 9 months ago

if 8 ki power x+1 =64 what is the value of 3 ki Power 2x+1

Answers

Answered by prince5132
6

CORRECT QUESTION :-

 \mapsto \sf \: if \: 8 ^{x + 1}  = 64 \:  then \: find \: the \: value \: of \: 3 ^{2x + 1}

GIVEN :-

 \mapsto \sf  \: 8 ^{x + 1}  = 64

TO FIND :-

 \mapsto \sf \: the \: value \: of \:  \: 3 ^{2x + 1}

SOLUTION :-

 \mapsto \sf  \: 8 ^{x + 1}  = 64

• Now expand 64 as 8².

 \mapsto \sf \:( 8) ^{x + 1}  = (8) ^{2}

• Now on comparing bases , The exponents will be also equal.

 \mapsto \sf \: x + 1 = 2 \\  \\  \mapsto \sf \: x = 2 - 1 \\  \\  \mapsto \underline{ \boxed{ \red{ \sf \: x = 1}}}

Hence the value of x is 1.

Now substitute the value of x in 3^2x + 1.

 \mapsto \sf \: (3) ^{2x + 1}  \\  \\  \mapsto \sf \: (3) ^{2 \times 1 + 1}  \\  \\ \mapsto \sf (3) ^{2 + 1}  \\  \\  \mapsto \sf (3) ^{3}  \\  \\ \mapsto \underline{ \boxed{ \red{ \sf  \: (3) ^{2x + 1 } = 27}}}

Hence the required answer is 27.

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{7cm} \\ \sf{ $  \implies \bf \sqrt[n]{ \sqrt[m]{ \sqrt[p]{((a^{x} )^{y}) ^{z}  } } }  = (a ^{xyz} )^{ \frac{1}{mnp} }  = a ^{ \frac{xyz}{mnp} }$} \\ \\ \sf{ $ \implies a^m \times a^n = a^{m+n}$} \\  \\  \sf{$ \implies {a}^{m} \times b^m = ab^m $} \\  \\ \sf{$ \implies \dfrac{a^m}{a^n} = a^{m - n} ( \tt{ If  \: m  > n} ) $} \\  \\ \sf{$ \implies \dfrac{a^m}{ a^n} = \dfrac{ 1}{ a^{n-m} } ( \tt{ If  \: n > m )}$} \\  \\ \sf{$ \implies (a^m)^n = a^{mn}$ } \\  \\ \sf{$ \implies a^{-n} = \dfrac{1}{ a^n}$}\end{minipage}}

Similar questions