If 8(p + 2) - 3[(3 - 2p) - 3(-3p - 5)] = 0, then find the value of p.
Answers
Answer:
8(p+2)- 3(3-2p) + 9(-3p-5) = 0
=> 8p + 16 - 9 +6p -27p-45 = 0
=> -13p -38 =0
=>p = -38/13
Step-by-step explanation:
Given -
8(p + 2) - 3[(3 - 2p) - 3(-3p - 5)] = 0
To Find -
Value of p
Now,
» 8(p + 2) - 3[(3 - 2p) - 3(-3p - 5)] = 0
» 8p + 16 - 3[(3 - 2p) + (9p + 15)] = 0
» 8p + 16 - 3[3 - 2p + 9p + 15] = 0
» 8p + 16 - 9 + 6p - 27p - 45 = 0
» - 13p - 38 = 0
» - 13p = 38
» p = 38/-13
- » p = - 38/13
Hence,
The value of p is -38/13
Verification -
» 8(p + 2) - 3[(3 - 2p) - 3(-3p - 5)] = 0
» 8(-38/13 + 2) - 3[(3 - 2×-38/13) - 3(-3×-38/13 - 5)] = 0
» 8(-38 + 26/13) - 3[(3 + 76/13) - 3(114/13 - 5) = 0
» 8 × -12/13 - 3[39 + 76/13 - 3(114 - 65/13)] = 0
» -96/13 - 3[115/13 - 3(49/13)] = 0
» -96/13 - 3[115/13 - 147/13] = 0
» -96/13 - 3[115 - 147/13] = 0
» -96/13 - 3[-32/13] = 0
» -96/13 + 96/13 = 0
» 0 = 0
LHS = RHS
Hence,
Verified..