if 8 sins A = 4 + cos A then find the value of tan A
Answers
Step-by-step explanation:
Solution :
SinA : CosA =4 :8 = 1 : 2
tanA = SinA : CosA = 1: 2.
Hence tanA = 1 : 2.
Don't forget to follow me!
if 8 sins A = 4 + cos A then the value of tan A = - 5/12, 3/4
Given,
8 sin A = 4 + cos A
upon dividing the both sides by cos A, we get,
8 sin A/cos A = 4/cos A + cos A/cos A
we know the trigonometric relations, sin/cos = tan and 1/cos = sec
we have,
8 tan A = 4 sec A + 1
8 tan A - 1 = 4 sec A
squaring on both sides, we get,
(8 tan A - 1)² = (4 sec A)²
8² tan² A + 1² - 2 × 8 tan A × 1 = 4² sec² A
64 tan² A + 1 - 16 tan A = 16 sec² A
as we know that sec² A = 1 + tan² A, we get,
64 tan² A + 1 - 16 tan A = 16 ( 1 + tan² A )
64 tan² A + 1 - 16 tan A = 16 + 16 tan² A
64 tan² A - 16 tan² A - 16 tan A = 16 - 1
48 tan² A - 16 tan A = 15
48 tan² A - 16 tan A - 15 = 0
solving the above quadratic equation, we get,
(12 tan A + 5) (4 tan A - 3) = 0
⇒ tan A = - 5/12 and tan A = 3/4
∴ tan A = - 5/12, 3/4