Math, asked by sabit7935, 8 months ago

If 8 tan x = 15, then cos x – sin x is equal to

Answers

Answered by Abhishek474241
4

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • 8TanX=15

{\sf{\green{\underline{\large{To\:find}}}}}

  • Cos X - Sin X

{\sf{\pink{\underline{\Large{Explanation}}}}}

  • we know that

\tt{Tan}\theta=\frac{p}{b}

\tt{Tan}\theta=\frac{15}{8}

Let the given tratios be k

Therefore

From Pythagoras Theorm

P²+b²=h²

utting value

=>(15)²+(8)²=h²

=>225k²+64k²=h²

=>h²=289k²

=>h=√289k²

=>h=17k

Now Finding Given values

Sin X = p/h = 15k/17k = 15/17

Cos X = b/h = 8k/17k = 8/17

Now Cos X -Sin X

\tt\rightarrow\frac{8}{17}-\frac{15{17}

\tt\rightarrow\frac{8-15}{17}

\tt\rightarrow\frac{-7}{17}

Hence value is -17/17

Answered by Anonymous
43

 \large\bf{ \red{ \underline{ \underline{Answer :}}}}  \\  \\   \:  \:  \: \purple{ \frac{ - 7}{17} }

  • Gɪᴠᴇɴ

 \tt{8 \: Tan \;x = 15 \:  -  -  -  -  - (1)}

________________________________________

\tt{ \implies Tan \: x =  \frac{15}{8} } \\  \\  \bf \underline {Using \: Pythagorous \: Rule : } \\  \\  \tt{AC =   \sqrt{ {8}^{2}  +  {15}^{2} }}  \\  \\  \:  \:  \:  \:  \:  \:  \tt = \sqrt{64 + 225}  \\  \\  \:  \:  \:  \:  \:  \:  \tt =  \sqrt{289} = 17 \\  \\  \tt\therefore AC = 17   \\  \\  \tt{Now \: Sin \: x =  \frac{15}{17}   \:  \:  \:  \:  \:  \:  \: Cos \: x =  \frac{8}{17}  } \\  \\  \tt{ \implies Cos \: x - Sin \: x} \\  \\  \tt{ \implies  \frac{8}{17} -  \frac{15}{17}  } \\  \\  \purple{  \implies \purple{\tt{ \underline {\boxed{ \frac{ - 17}{ 12} }}}}}

Similar questions