Math, asked by ashusingh66, 5 months ago

if 8 tanQ=15 then sinqlQ-cosQ

Answers

Answered by Anonymous
6

Answer:

Tan A= 15/8=perpendicular/base

sinA=perpendicular/hypotenuse

cosA=Base/hypotenuse

(H)²=(P)²+(B)²

(H)²=(15)²+(8)²

(H)²=225+64

(H)²=289

H=17

sinA=15/17

cosA=8/17

                      sinA-cosA=15/17-8/17

                                        15-8/17

                                       → 7/17

Step-by-step explanation:

Answered by abhisheksinghr81
0

Answer:

Here, Sin theta-Cos theta=7/17

Step-by-step explanation:

Here, As per our given question,

=8Tan theta=15

=Tan theta=15/8

So, Tan theta=15/8=P/b(Perpendicular/Base)

=Now, by applying Pythagorean theorem, we get,

=H^2=P^2+B^2

=H^2=(15)^2+(8)^2

=H^2=225+64

=H^2=289

Now, by doing square root on both sides, we get,

=H=17

Now, Sin theta=P/h=15/17

Cos theta=B/h=8/17

So, Sin theta-Cos theta=

=(15/17)-(8/17)

As here denominators of both numbers are equal,

So, =(15-8)/17

=7/17

=7/17 (Answer).

Thank you.

Similar questions