if 8 tanQ=15 then sinqlQ-cosQ
Answers
Answer:
Tan A= 15/8=perpendicular/base
sinA=perpendicular/hypotenuse
cosA=Base/hypotenuse
(H)²=(P)²+(B)²
(H)²=(15)²+(8)²
(H)²=225+64
(H)²=289
H=17
sinA=15/17
cosA=8/17
sinA-cosA=15/17-8/17
15-8/17
→ 7/17
Step-by-step explanation:
Answer:
Here, Sin theta-Cos theta=7/17
Step-by-step explanation:
Here, As per our given question,
=8Tan theta=15
=Tan theta=15/8
So, Tan theta=15/8=P/b(Perpendicular/Base)
=Now, by applying Pythagorean theorem, we get,
=H^2=P^2+B^2
=H^2=(15)^2+(8)^2
=H^2=225+64
=H^2=289
Now, by doing square root on both sides, we get,
=H=17
Now, Sin theta=P/h=15/17
Cos theta=B/h=8/17
So, Sin theta-Cos theta=
=(15/17)-(8/17)
As here denominators of both numbers are equal,
So, =(15-8)/17
=7/17
=7/17 (Answer).
Thank you.