Math, asked by yunuskhan786, 3 months ago

if 8 tanx = 15, then sinx - COSX is equal to
17/5
7/17
1/17
8/17




ans plz ​

Answers

Answered by amansharma264
73

EXPLANATION.

⇒ 8tanx = 15.

As we know that,

⇒ tan(x) = 15/8.

tan∅ = perpendicular/base.

By using Pythagoras theorem, we get.

⇒ H² = P² + B².

⇒ H² = (15)² + (8)².

⇒ H² = 225 + 64.

⇒ H² = 289.

⇒ H = √289.

⇒ H = 17.

sin∅ = perpendicular/hypotenuse. = 15/17.

cos∅ = Base/hypotenuse. = 8/17.

tan∅ = perpendicular/base. = 15/8.

cosec∅ = hypotenuse/perpendicular = 17/15.

sec∅ = hypotenuse/base. = 17/8.

cot∅ = base/perpendicular. = 8/15.

To find value of,

(1) = sin(x) - cos(x).

⇒ 15/17 - 8/17.

⇒ 15 - 8/17.

⇒ 7/17.

option [B] is correct answer.

                                                                                                                     

MORE INFORMATION.

(1) = Relation between systems of measurement of angles.

D/90 = G/100 = 2C/π.

(2) = Fundamental trigonometric identities.

(a) = sin²∅ + cos²∅ = 1.

(b) = 1 + tan²∅ = sec²∅.

(c) = 1 + cot²∅ = cosec²∅.

Answered by Anonymous
48

Answer:

Given :-

  • 8 tanx = 15

To Find :-

  • What is the value of sinx - cosx.

Formula Used :-

\sf\boxed{\bold{\small{sin\theta =\: \dfrac{Perpendicular}{Hypotenuse}}}}

\sf\boxed{\bold{\small{cos\theta =\: \dfrac{Base}{Hypotenuse}}}}

\sf\boxed{\bold{\small{{(Hypotenuse)}^{2} =\: {(Perpendicular)}^{2} + {(Base)}^{2}}}}

Solution :-

Given :

\mapsto 8 tanx = 15

Then,

\sf tanx =\: \dfrac{15}{8}

As we know that,

\sf\boxed{\bold{\small{tan\theta =\: \dfrac{Perpendicular}{Base}}}}

Then, from formula we can tell that,

  • Perpendicular = 15
  • Base = 8

According to the question by using the formula we get,

\sf {(Hypotenuse)}^{2} =\: {(15)}^{2} + {(8)}^{2}

\sf {(Hypotenuse)}^{2} =\: 225 + 64

\sf {(Hypotenuse)}^{2} =\: 289

\sf Hypotenuse =\: \sqrt{289}

\sf\bold{\pink{Hypotenuse =\: 17}}

Now we get that,

  • Perpendicular = 15
  • Base = 8
  • Hypotenuse = 17

Then,

\sf sin\theta =\: \dfrac{Perpendicular}{Hypotenuse} =\: \dfrac{15}{17}

\sf cos\theta =\: \dfrac{Base}{Hypotenuse} =\: \dfrac{8}{17}

Now we have to find the value of sinx - cosx,

Given :

  • sinx = \sf \dfrac{15}{17}
  • cosx = \sf \dfrac{8}{17}

Then,

\sf sinx -\: cosx

\sf \dfrac{15}{17} -\: \dfrac{8}{17}

\sf \dfrac{15 - 8}{17}

\sf\bold{\purple{\dfrac{7}{17}}}

Hence, the correct options is option no 2) 7/17.

{\underline{\boxed{\small{\bf{\therefore The\: value\: of\: sinx\: -\: cosx\: is\: \dfrac{7}{17}.}}}}}

Similar questions