Math, asked by Thakur5100, 10 months ago

If 8^x+1=64 what is the value of 2^x+1

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{2^{x+1}=4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {8}^{x + 1}  = 64 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  {2}^{x + 1}  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {8}^{x + 1}  = 64 \\  \\ \tt:  \implies  {8}^{x + 1}  =  {8}^{2}  \\  \\  \text{Both \: sides \: bases \: are \: same} \\  \text{So, \: powers \: are \: also \: same} \\  \\  \tt:  \implies x + 1 = 2 \\  \\ \tt:  \implies x = 2 - 1 \\  \\  \green{\tt:  \implies x = 1} \\  \\  \bold{For \: finding \: value :} \\ \tt:  \implies  {2}^{x + 1}  \\  \\ \tt:  \implies  {2}^{1 + 1}  \\  \\ \tt:  \implies  {2}^{2}  \\  \\  \green{\tt:  \implies 4} \\  \\  \green{\tt \therefore 2^{x + 1} = 4}

Answered by Saby123
4

In the above Question , the following information is given -

 \sf{ 8^ {x + 1 } = 64 }

We have to find the value of  \sf{ 2^ {x + 1 } }

SoLuTiOn -

 \sf{ 8^ {x + 1 } = 64 } \\  \\  \sf{8^ {x + 1 } =  {8}^{2} } \\  \\ \sf{Hence \: x \:  + 1 = 2} \\  \\   \sf{ =  > x + 1 = 2} \\  \\  \sf{ =  >  x+ 1 - 1 =  2- 1} \\  \\  \sf{ \therefore{x = 1}}

 \sf{Now  \:  we  \: have  \: to  \: find \:  the  \: value  \: of - } \\  \\  \sf{ {2}^{x + 1} } \\  \\  \sf{We \: found \: earlier \: that \: x \:  = 1} \\  \\  \sf{Substituting \: that \: value \: of \: x \:   -  \: } \\  \\  \sf{ =  >  {2}^{ 1+ 1} } \\  \\  \sf{ =  >  {2}^{2} } \\  \\  \sf{ =  > 4}

Hence the required value is 4 .....

__________________

Similar questions