Math, asked by aai12, 1 year ago

if 8^x+3 = 1022 + 8^x, then find the value of (12x)^1/4

Answers

Answered by MaheswariS
3

\textbf{Given:}

8^{x+3}=1022+8^x

\textbf{To find:}

\text{The value of x}

\text{Consider}

8^{x+3}=1022+8^x

\implies\,8^{x+3}-8^x=1022

\implies\,8^x(8^3-1)=1022

\implies\,8^x(512-1)=1022

\implies\,8^x(511)=1022

\implies\,8^x=2

\implies\,(2^3)^x=2^1

\implies\,2^{3x}=2^1

\text{Equating powers on bothsides, we get}

3x=1

\implies\boxed{\bf\,x=\dfrac{1}{3}}

\text{Now,}

\bf(12x)^{\frac{1}{4}}

=(12(\dfrac{1}{3}))^{\frac{1}{4}}

=(4)^{\frac{1}{4}}

=((\sqrt{2})^4)^{\frac{1}{4}}

=\sqrt{2}

\therefore\textbf{The value of $\bf(12x)^{\frac{1}{4}}$ is $\bf\sqrt2$}

Find more:

If 5^x-1 + 5^x+1=650 then find x​

https://brainly.in/question/11573395

Similar questions