Math, asked by rksinghrajput1012002, 14 days ago

if 8a^3+b^3=14 and 2a+b=7 ,then find the value of 16a^4+b^4​

Answers

Answered by suhail2070
0

Step-by-step explanation:

8 {a}^{3}  +  {b}^{3}  = 14 \\  \\  {(2a)}^{3}  +  {b}^{3}  = 14 \\  \\ (2a + b)( 4 {a}^{2}  - 2ab +  {b}^{2} ) = 14 \\  \\ 7(4 {a}^{2}   - 2ab +  {b}^{2} ) = 14 \\  \\ 4 {a}^{2}  - 2ab +  {b}^{2}  = 2 \\  \\  \\  \\  \\ therefore \:  \:  \:  \: 16 {a}^{4}  +  {b}^{4}  =  {(2a)}^{4}  +  {(b)}^{4}  \\  \\  =     {(4 {a}^{2}   +  {b}^{2} )}^{2}  - 4 {a}^{2}  {b}^{2}  \\  \\  =   ({(4 {a}^{2}  +  {b}^{2} )}^{} - 2ab)(4 {a}^{2}  +  {b}^{2}   + 2ab) \\  \\  = 2(4 {a}^{2}  +  {b}^{2}  + 2ab).

Similar questions