Math, asked by ohlyanhimanshi9, 4 months ago

If 8cm,4cm and 2cm are Length, width and height of a cuboid respectively then find the its volume ​

Answers

Answered by Anonymous
29

Given :-

• Length of the cuboid = 8cm

• Width of the cuboid = 4cm

• Height of the cuboid = 2cm

Solution :-

Here, We know that

Length = 8cm , Breath = 4cm, Height = 2cm

Volume of cuboid = Length * Breath * height

Put the required values,

Volume of cuboid = 8 * 4 * 2

Volume of cuboid = 64cm^3

Hence, The answer is 64cm^3

Formulas related to

cuboid :-

• Curved surface area = 2 ( l + b)h

• Total surface area = 2 ( lb + bh + hl)

• Volume of cuboid = l * b * h.


Anonymous: Nice
Arfat333: Amazing
Anonymous: Woah .! Nicee ♥️
Anonymous: Thankies
Answered by iTzShInNy
67

 \underline{ \sf Given:- }

 \\

  •  \small \sf{Length \: of \: a \: cuboid,l \:   \large\longrightarrow \small \boxed{ \bf 8  \: cm}}

 \\

  •  \small \sf{Breadth \: of \: a \: cuboid,b \:   \large\longrightarrow \small \boxed{ \bf 4  \: cm}}

 \\

  •  \small \sf{Height\: of \: a \: cuboid \:  ,h \large\longrightarrow \small \boxed{ \bf  2 \: cm}}

 \\

━━━━━━━ \pink ★ ━━━━━━━

 \\

 \underline{ \sf To \: Find:-}

 \\

  •  \small \sf{Volume\: of \: a \: cuboid \:   \large\longrightarrow \small \boxed{ \bf ?}}

 \\

━━━━━━━  \green ★ ━━━━━━━

 \\

 \underline{ \sf Formula \: Required:-}

 \\

  \\ \small\bigstar {\underline {\boxed { \bf  {\green\: Volume \: of \: a \: Cuboid \leadsto Length \times Breadth \times Height }}}} \bigstar \\

 \\

━━━━━━━  \blue ★ ━━━━━━━

 \\

 \underline{ \sf SoluTioN:-}

 \\

 \small \sf \:We  \: know,

 \\  \small{ \bf   \implies Volume \: of \: a \: Cuboid \leadsto Length \times Breadth \times Height }\\

 \small{ \bf   \implies Volume \: of \: a \: Cuboid \leadsto 8\times 4\times 2 }\\

\small{ \bf   \implies Volume \: of \: a \: Cuboid \leadsto 32 \times 2 }\\

 \small{ \bf   \implies Volume \: of \: a \: Cuboid \leadsto 64 \: cm {}^{3}  }\\

 \\

 \small \sf  \therefore The  \: Volume \: of \: a \: Cuboid \: is \: 64 \: cm {}^{3}  \\

 \\

━━━━━━━ \red ★ ━━━━━━━

 \\

 \underline{ \sf \: More \: Information:-}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cuboid  \large\leadsto  \small \boxed{ \bf l \times b \times h}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cube \large\leadsto  \small \boxed{ \bf  {a}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cylinder  \large\leadsto  \small \boxed{ \bf \pi  {r}^{2}h }

 \\

  •  \small \sf \: Volume  \: of \: a \:Cone\large\leadsto  \small \boxed{ \bf  \frac{1}{3}\pi r {}^{2} h }

 \\

  •  \small \sf \: Volume  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf  \frac{4}{3} \pi r {}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf  \frac{2}{3}\pi  {r}^{3}  }

 \\

 ━━━━━━━\purple ★ ━━━━━━━

 \\

Similar questions