if 8th term is ap is zero proot that its 38 term is triple of its 18 terms
Answers
Answered by
1
t₈ = 0
a+7d = 0
a = -7d (i)
t₁₈ = a+17d
t₁₈ = -7d+17d
t₁₈ = 10d
t₃₈ = a+37d
t₃₈ = -7d+37d
t₃₈ = 30d
t₃₈ = 3(10d)
t₃₈ = 3(t₁₈)
Hence, proved.
a+7d = 0
a = -7d (i)
t₁₈ = a+17d
t₁₈ = -7d+17d
t₁₈ = 10d
t₃₈ = a+37d
t₃₈ = -7d+37d
t₃₈ = 30d
t₃₈ = 3(10d)
t₃₈ = 3(t₁₈)
Hence, proved.
Answered by
2
Given, 8th term of an A.P = 0
Formula:
An or Xn = A + (n-1)*d [An or Xn = last term or Nth term; A - first term,
d- common difference, n-number of terms]
8th term = 0
0 = A + (8-1)*d
0 = A + 7*d
A = -7*d .......(i)
Now: 38th term
A38 = A + (38-1)*d
A38 = -7*d + 37*d [sub value of A from (i)]
A38 = 30*d ......(ii)
18th term:
A18 = A + (18-1)*d
A18 = -7*d + 17*d [sub value of A from (i)]
A18 = 10*d ......(iii)
Compare (ii) && (iii)
A38 = 30*d && A18 = 10*d
Hence, A38 = 3*10*d = 3*A18
This shows that the 38th term is triple of 18th term. Hence Proved
Similar questions