If 8th term of an AP is -23 and its 12th term -39. Find the AP?
Answers
Answered by
9
a8 = -23
a12 = -39
a+7d = -23. (sign changed)
a+11d = -39
--------------------
-4d = 16
d = -4
a+7d = -23
a+7x(-4) = -23
a= -23+28
= 5
a = 5
a2 = a+d = 5+(-4) = 1
a3 = a+2d = 5+2x(-4) = 5+(-8) = -3
A.P is 5,1,3...................an
HOPE IT HELPS YOU !!!!
a12 = -39
a+7d = -23. (sign changed)
a+11d = -39
--------------------
-4d = 16
d = -4
a+7d = -23
a+7x(-4) = -23
a= -23+28
= 5
a = 5
a2 = a+d = 5+(-4) = 1
a3 = a+2d = 5+2x(-4) = 5+(-8) = -3
A.P is 5,1,3...................an
HOPE IT HELPS YOU !!!!
neha877:
ohh Good name samaria
Answered by
16
Hey there !!
Given :-
→ a₈ = -23.
→a₁₂ = -39.
To find :-
→ AP.
Solution :-
We have ,
→ a₈ = -23.
⇒ a + 7d = -23.........(1).
And,
→ a₁₂ = -39.
⇒ a + 11d = -39......(2).
On substracting equation (1) and (2), we get
a + 7d = -23.
a + 11d = -39.
- - +
___________
⇒ -4d = 16.
⇒ d = 16/-4= -4.
Put the value of d in equation (1), we get
⇒ a + 7d = -23.
⇒ a + 7 × (-4) = -23.
⇒ a - 28 = -23.
⇒ a = -23 + 28.
⇒ a₁ = 5 .
⇒ a₂ = 5 - 4= 1.
⇒ a₃ = 1 - 4 = -3.
Hence, AP is 5, 1, -3.... .
THANKS
#BeBrainly.
Similar questions