Math, asked by random12, 8 months ago

if 8x-9y=6xy and 10x+6y=19xy, the value of xy is? ​

Answers

Answered by saounksh
4

Answer:

xy =  1

Step-by-step explanation:

GivenEquations

8x - 9y = 6xy

10x + 6y = 19xy

or

 \frac{8x - 9y}{xy}  = 6

 \frac{10x + 6y}{xy}  = 19

or

 \frac{8}{y}  -  \frac{9}{x}  = 6........(1)

 \frac{10}{y}  +  \frac{6}{x}  = 19.........(2)

Solution by elimination method

Multiplying (1) by 2 and (2) by 3 we get

 \frac{16}{y}  -  \frac{18}{x}  = 12

 \frac{30}{y}  +  \frac{18}{x}  = 57

Adding the equations gives

 \frac{30}{y}  +  \frac{16}{y}  = 57 + 12

or \:  \frac{46}{y}  = 69

or \: y =  \frac{46}{69}

or \: y =  \frac{2}{3}

Using this value of y in (1) we get

 \frac{8}{( \frac{2}{3} )}  -  \frac{9}{x}  = 6

or \:  \frac{8 \times 3}{2}  -  \frac{9}{x}  = 6

or \:  \frac{4 \times 3}{1}  - 6 =  \frac{9}{x}

or \:  12 - 6 =   \frac{9}{x}

or \:  \frac{9}{x}  =  6

or \: 6x = 9

or \: x =  \frac{3}{2}

Hence

xy =  \frac{3}{2}  \times  \frac{2}{3}  =  1

Similar questions