Math, asked by meeranikeshpandey767, 6 hours ago

If (9/4)^-4 * (2/3)^3 = (p/q) ^11 , then find the value of (p/q) ^-2​

Answers

Answered by Starrex
9

\bigstar\boxed{\large\bf{\leadsto \left(\dfrac{p}{q}\right)^{-2}=\dfrac{9}{4}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\large\sf\underline{ Given\: expression:}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{9}{4}\right)^{-4}\times \left(\dfrac{2}{3}\right)^3 = \left(\dfrac{p}{q}\right)^{11}}

\large\sf\purple{\underline{\dag Solution: }}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{9}{4}\right)^{-4}\times \left(\dfrac{2}{3}\right)^3 = \left(\dfrac{p}{q}\right)^{11}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\left(\dfrac{3}{2}\right)^2\right)^{-4}\times \left(\dfrac{2}{3}\right)^3 =\left(\dfrac{p}{q}\right)^{11}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{3}{2}\right)^{-8}\times \left(\dfrac{2}{3}\right)^3 =\left(\dfrac{p}{q}\right)^{11}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{2}{3}\right)^{11} =\left(\dfrac{p}{q}\right)^{11}}

ㅤㅤㅤㅤㅤ\sf{\implies \dfrac{p}{q} = \dfrac{2}{3} }

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\large\sf\purple{\underline{\dag Putting\:the\:value\:of\:\left(\dfrac{p}{q}=\dfrac{2}{3}\right)\:in\left(\dfrac{p}{q}\right)^{-2} }}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{p}{q}\right)^{-2} = \left(\dfrac{2}{3}\right)^{-2}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \left(\dfrac{3}{2}\right)^{2}}

ㅤㅤㅤㅤㅤ\boxed{\sf{\longrightarrow \dfrac{9}{4}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions