Math, asked by tanisha127, 3 months ago

if (9/4)-⁴x(2/3)³= (p/q)¹¹, then find the value of (p/q)-²

solve pls take ur time thank you ​

Attachments:

Answers

Answered by Anonymous
5

  \\ =  > \huge  \frac{9}{4}

so, your required answer to this question is

9/4

Step-by-step explanation:

hope it's helpful,,

:-)

{ \colorbox{lightgreen}{\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{BR}}{\purple {AI}}{\pink{NL}}{\color{pink}{Y}}}}}}} \\ { \colorbox{yellow}{\huge{\textbf{\textsf{{\color{red}{}}{\red{}}{}}}} \huge{\textbf{\textsf{{\color{navy}{}}{\purple {G}} \:   \: \:  \:  {\pink{O}} \:  \:  \:  \: {\color{pink}{D࿐}}}}}}}

Attachments:
Answered by Hezal12
3

Answer:

 \frac{9}{4}  \:  \: ans. \\

Step-by-step explanation:

,

 {  (\frac{9}{4}) }^{ - 4}  \times  {( \frac{2}{3}) }^{3}  = ( { \frac{p}{q} })^{ 11}  \\  =  >  { (\frac{4}{9} )}^{4}  \times {( \frac{2}{3}) }^{3}  = ( { \frac{p}{q} })^{ 11}\\  =  >  { ({ (\frac{2}{3}) }^{2} )}^{4} \times {( \frac{2}{3}) }^{3}  = ( { \frac{p}{q} })^{ 11} \\  =  >  ({ \frac{2}{3} )}^{4 \times 2}  \times {( \frac{2}{3}) }^{3}  = ( { \frac{p}{q} })^{ 11} \\  =  >  {( \frac{2}{3}) }^{8}  \times {( \frac{2}{3}) }^{3}  = ( { \frac{p}{q} })^{ 11} \\  =  >  {  (\frac{2}{3} )}^{ 8+ 3}  = ( { \frac{p}{q} })^{ 11} \\  =  >{ (\frac{2}{3} )}^{ 11}  = ( { \frac{p}{q} })^{ 11} \\ when \: exponents \: are \: same \: then \: base \: are \: also \: same. \\ so ,\:  \:  \:  \frac{p}{q}  =  \frac{2}{3}  \\ =  >  ( { \frac{p}{q}) }^{ - 2}   \\   =  > ( { \frac{2}{3} )}^{ - 2}  \\  =  > ( { \frac{3}{2} )}^{ 2} \\  =  >  \frac{9}{4}  \:  \: ans.

Hope it's helpful to you :) :)

Similar questions