Math, asked by Anonymous, 2 months ago

if х=9 - 4√5, find X²+1/X²

Answers

Answered by Aryan0123
3

Given:

  • x = 9 - 4√5

\\

To find:

x² - 1/x² = ?

\\

Solution:

x = 9 - 4√5

Squaring on both sides,

x² = (9 - 4√5)²

Split using (a - b)² = a² + b² - 2ab

⇒ x² = (9)² + (4√5)² - 2(9)(4√5)

⇒ x² = 81 + 80 - 72√5

⇒ x² = 161 - 72√5

\\

For finding the value of 1/x²

 \sf{\dfrac{1}{ {x}^{2} } =  \dfrac{1}{161 - 72 \sqrt{5} }  } \\  \\

Rationalize the Denominator

\sf{ \dfrac{1}{ {x}^{2} } =  \dfrac{1}{161 - 72 \sqrt{5} }  \times  \dfrac{161 + 72 \sqrt{5} }{161 + 72 \sqrt{5} } } \\  \\

Multiply using (a + b) (a - b) = a² - b²

 \sf{ \dfrac{1}{ {x}^{2} } =  \dfrac{161 +72 \sqrt{5} }{(161)^{2}  - (72 \sqrt{5}) ^{2}  }  } \\  \\

So

\to \: \sf {\dfrac{1}{ {x}^{2} }  =  \dfrac{161 + 72 \sqrt{5} }{25921 - 25920} } \\  \\

Now we have

\sf {\dfrac{1}{ {x}^{2} }  = 161 + 72 \sqrt{5} } \\  \\

Adding and 1/

x² + 1/x²

= (161 - 72√5) + (161 + 72√5)

= 161 - 72√5 + 161 + 72√5

= 322

\\

x² + 1/x² = 322

Similar questions