Math, asked by divya1687, 1 year ago

If √9+√77,then find the value of 1/11(x+2/x)²


Anonymous: ___k off

Answers

Answered by antitashah123
2

Answer:

53

hope it works

gyuihffg

Answered by Qwdelhi
3

If x=√(9+√77) then the value of [(x+2/x)^2]/11 is?​

The value of [(x+2/x)^2]/11  is 2.

Given:

x=√(9+√77)

To Find:

The value of [(x+2/x)^2]/11

Solution:

x = \sqrt{(9+\sqrt{77} } \\\\

Squaring  on both sides

x^{2} = (\sqrt{(9+\sqrt{77} } )^{2} \\\\x^{2}  = 9 +\sqrt{77}------------(1)\\\\

reciprocal on both side

\frac{1}{x^{2} } = \frac{1}{9+\sqrt{77} }

Rationalizing R.H.S

\frac{1}{x^{2} } = \frac{1}{9+\sqrt{77} } * \frac{9-\sqrt{77}}{9-\sqrt{77}} \\\\\frac{1}{x^{2} } = \frac{9-\sqrt{77}}{9^{2} -\sqrt{77} ^{2}  } \\\\\frac{1}{x^{2} } = \frac{9-\sqrt{77}}{81-77} \\\\\frac{1}{x^{2} } = \frac{9-\sqrt{77}}{4}-------------(2)

Consider (x+ 2/x)²

This is of the form (a+b)²= a² +2ab +b²,where a = x and b = 2/x .

=x^{2} + 2*x * \frac{2}{x} +( \frac{2}{x})^{2} \\\\=x^{2} +4+4*\frac{1}{x^{2} }

Substituting the value of x² and 1/x² from equation (1)

=9+\sqrt{77} +4+4*\frac{9-\sqrt{77} }{4 }\\\\=9+\sqrt{77} +4+9-\sqrt{77}\\\\= 22

Now ,

[(x+2/x)^2]/11

= 22/11

=2

∴ The value of [(x+2/x)^2]/11  is 2.

#SPJ3

Similar questions