if 9 sin A + 40 cos A = 40, prove that 41 cos A = 40
Answers
Step-by-step explanation:
t is given that 9sinθ + 40cosθ = 41
then we have to find all the trigonometric ratios
9sinθ + 40cosθ = 41
⇒9sinθ/sinθ + 40cosθ/cosθ = 41/cosθ
⇒9 + 40tanθ = 41secθ
⇒(9 + 40tanθ)² = (41secθ)²
⇒9² + 40²tan²θ + 2(9)(40)tanθ = 41²sec²θ
⇒81 + 1600tan²θ + 720tanθ = 1681 + 1681tan²θ
⇒81tan²θ - 720tanθ + 1600 = 0
⇒(9tanθ)² - 2(9tanθ)(40) + 40² = 0
⇒(9tanθ - 40)² = 0
⇒tanθ = 40/9
so, sinθ = 40/41 ,
cosecθ = 41/40,
cosθ = 9/41 ,
secθ = 41/9,
cotθ = 9/40
hope it helps you.
please mark me as brainliest.
please please please please
40 cos theta + 90 sin theta = 41
9 sin theta = 41 - 40 cos theta
squaring both the sides
81 sin square theta = 1681 + 1600 cos square theta - 2 . 40 . 41 cos theta .
81 -81 cos square theta =1681 + 1600 cos square theta- 3280 cos theta .
1681 cos square theta - 3280 cos theta + 1600 = 0 .
hope this helps you..