If 9 sintheta + 40 costheta = 41 then prove all the trigonometric ratios sintheta = ?, cos theta = ?....
Answers
Answered by
13
Hope it helps u definitely And thanks for asking doubt
Attachments:
Answered by
10
it is given that 9sinθ + 40cosθ = 41
then we have to find all the trigonometric ratios
9sinθ + 40cosθ = 41
⇒9sinθ/sinθ + 40cosθ/cosθ = 41/cosθ
⇒9 + 40tanθ = 41secθ
⇒(9 + 40tanθ)² = (41secθ)²
⇒9² + 40²tan²θ + 2(9)(40)tanθ = 41²sec²θ
⇒81 + 1600tan²θ + 720tanθ = 1681 + 1681tan²θ
⇒81tan²θ - 720tanθ + 1600 = 0
⇒(9tanθ)² - 2(9tanθ)(40) + 40² = 0
⇒(9tanθ - 40)² = 0
⇒tanθ = 40/9
so, sinθ = 40/41 ,
cosecθ = 41/40,
cosθ = 9/41 ,
secθ = 41/9,
cotθ = 9/40
Similar questions