If 9^x× 3^2×(3^-x/2)^-2=1/27
Answers
Answer:
Here is your answer......
Answer:
Heya friend,
Here is the answer you were looking for:
\begin{gathered} {9}^{x} \times {3}^{2} ( {3}^{ \frac{x}{ - 2} } )^{ - 2} = \frac{1}{27} \\ \\ {(3}^{2} )^{x} \times {3}^{2} ( {3}^{ \frac{ - 2x}{ - 2} } ) = \frac{1}{ {3}^{3} } \\ \\ = {3}^{2x} \times {3}^{2} ( {3}^{x} ) = {3}^{ - 3} \\ \\ {3}^{ 2x } \times {3}^{2} \times {3}^{x} = {3}^{ - 3} \\ \\ {3}^{2x + 2 + x} = {3}^{ - 3} \\ \\ {3}^{3x + 2} = {3}^{ - 3} \end{gathered}
9
x
×3
2
(3
−2
x
)
−2
=
27
1
(3
2
)
x
×3
2
(3
−2
−2x
)=
3
3
1
=3
2x
×3
2
(3
x
)=3
−3
3
2x
×3
2
×3
x
=3
−3
3
2x+2+x
=3
−3
3
3x+2
=3
−3
As the bases are same, so putting the powers equal:
\begin{gathered}3x + 2 = - 3 \\ \\ 3x = - 3 - 2 \\ \\3x = - 5 \\ \\ x = - \frac{5}{3} \end{gathered}
3x+2=−3
3x=−3−2
3x=−5
x=−
3
5
If any doubt, please ask ;)
Thanks...
☺☺