Math, asked by arpitdeosthale, 2 months ago

If 9 ^ x + 6 ^ x = 2.4 ^ x then the value of (x ^ 3 + 64)/5​

Answers

Answered by pulakmath007
1

\displaystyle \sf   The\: value \: of \:  \:  \:  \frac{ {x}^{3}  + 64}{5}  =  \bf \:  \frac{64}{5}

Given :

\displaystyle \sf   {9}^{x}  +  {6}^{x}  = 2. {4}^{x}

To find :

\displaystyle \sf   The\: value \: of \:  \:  \:  \frac{ {x}^{3}  + 64}{5}

Solution :

Step 1 of 3 :

Write down the given equation

Here the given equation is

\displaystyle \sf   {9}^{x}  +  {6}^{x}  = 2. {4}^{x}

Step 2 of 3 :

Find the value of x

\displaystyle \sf   {9}^{x}  +  {6}^{x}  = 2. {4}^{x}

\displaystyle \sf \implies     \frac{{9}^{x}}{{4}^{x}}   + \frac{{6}^{x}}{{4}^{x}}  = 2

\displaystyle \sf \implies     {\bigg( \frac{9}{4} \bigg)}^{x}    + {\bigg( \frac{6}{4} \bigg)}^{x}  = 2

\displaystyle \sf \implies  {\bigg( \frac{3}{2} \bigg)}^{2x}       + {\bigg( \frac{3}{2} \bigg)}^{x}   -  2 = 0

\displaystyle \sf Let  \:  \: {\bigg( \frac{3}{2} \bigg)}^{x}  = a

Then above becomes

\displaystyle \sf   {a}^{2}  + a - 2 = 0

\displaystyle \sf{ \implies }{a}^{2}  + (2 - 1)a - 2 = 0

\displaystyle \sf{ \implies }{a}^{2}  + 2a -a - 2 = 0

\displaystyle \sf{ \implies }a(a + 2) - 1(a + 2) = 0

\displaystyle \sf{ \implies }(a + 2) (a  - 1) = 0

\displaystyle \sf{ \implies }  Either \:  \:  \: (a + 2)  = 0 \:  \: or \:  \: (a  - 1) = 0

Now,

\displaystyle \sf  a + 2 = 0 \:  \: gives

\displaystyle \sf  a =  - 2

\displaystyle \sf  {\bigg( \frac{3}{2} \bigg)}^{x}  =  - 2

From above value of x can not be determined

Again ,

\displaystyle \sf  a - 1 = 0 \:  \: gives

\displaystyle \sf{ \implies }a = 1

 \displaystyle \sf{ \implies } {\bigg( \frac{3}{2} \bigg)}^{x}  = 1

\displaystyle \sf{ \implies } {\bigg( \frac{3}{2} \bigg)}^{x} =  {\bigg( \frac{3}{2} \bigg)}^{0}

\displaystyle \sf{ \implies }x = 0

So the value of x satisfying the given equation is 0

Step 3 of 3 :

\displaystyle \sf  Find\: value \: of \:  \:  \:  \frac{ {x}^{3}  + 64}{5}

\displaystyle \sf   \frac{ {x}^{3}  + 64}{5}

\displaystyle \sf   =  \frac{ {0}^{3}  + 64}{5}

\displaystyle \sf   =  \frac{ 0  + 64}{5}

\displaystyle \sf   =  \frac{ 64}{5}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

#SPJ2

Similar questions