Math, asked by santhoshvarma7003, 1 year ago

If α + β = 90° and α:β = 2:1 , then find the value of Sinα :Sinβ

Answers

Answered by vivekkumar6560
1

Answer:

√3

Step-by-step explanation:

i Hope this help you fhggujvvguj

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

\huge\sf\pink{Answer}

☞ Sin α : Sin β = √3 : 1

\rule{110}1

\huge\sf\blue{Given}

➝ α + β = 90°

➝ α : β = 2 : 1

\rule{110}1

\huge\sf\gray{To \:Find}

✭ Value of Sin α : Sin β

\rule{110}1

\huge\sf\purple{Steps}

➳ α + β = 90

Let β = 2x and β = X .

Sum of a + b will be :-

➳ 2x + X = 3x.

\begin{lgathered}\sf{\dashrightarrow a = \dfrac{2x}{3x} \times 90 }\end{lgathered}

\begin{lgathered}\sf{\dashrightarrow a = 2 \times 30 = 60 }\end{lgathered}

➳ α + β = 90

➳ 60 + β = 90

➳ β = 30 °

Putting the values of Sin α and Sin β :

\begin{lgathered}\sf\twoheadrightarrow  \dfrac{ sin(\alpha) }{ sin(\beta) } = \dfrac{ sin(60) }{ sin(30) } \end{lgathered}

\begin{lgathered}\sf\twoheadrightarrow  sin 60= \dfrac{ \sqrt{3} }{ 2 } \end{lgathered}

\begin{lgathered}\sf\twoheadrightarrow sin 30= \dfrac{ 1 }{ 2 } \end{lgathered}

Putting these values in ratio :

\begin{lgathered}\sf\leadsto \: \dfrac{ sin(\alpha) }{ \sin(\beta) } = \dfrac{ \dfrac{ \sqrt{3} }{2} }{ \dfrac{1}{2} } \end{lgathered}

\begin{lgathered}\sf\leadsto \: \dfrac{ sin(\alpha) }{ sin(\beta) } = \dfrac{ \sqrt{3} }{2} \times 2 \end{lgathered}

\sf\orange{\leadsto{\dfrac{sin(\alpha)}{sin(\beta)} = \dfrac{\sqrt{3}}{1}}}

\rule{170}3

Similar questions