Math, asked by Rudranil420, 10 months ago

If α+β =90° and If If α+β =90° and α : β = 2:1 find the value of sinα : sinβ​

Answers

Answered by Anonymous
46

Question :

If If α+β =90° and α : β = 2:1 find the value of sinα : sinβ.

Solution :

We have ,α+β =90°

⇒β =90°-α....(1)

and ,α : β = 2:1

\sf\implies\dfrac{\alpha}{90-\alpha}=\dfrac{2}{1}

\sf\implies\alpha=180-2\alpha

\sf\implies3\alpha=180

\sf\implies\alpha=60

Thus,β =90°-α

⇒β =90°-60°=30°

Therefore ,

\sf\implies\dfrac{\sin\alpha}{\sin\beta}

\sf=\dfrac{\sin60\degree}{\sin30\degree}

\sf=\dfrac{\sqrt{3}}{1}

Therefore,sinα : sinβ= √3:1

Answered by Anonymous
7

Given -

[Let alpha = a , Beta = b ]

→ a + b = 90°

→ a : b = 2 : 1

To Find :-

→ Value of Sin a : Sin B

Solution :-

→ a + b = 90

Let a = 2x and b = X .

Sum of a + b will be :-

→ 2x + X = 3x.

\sf{\implies a = \frac{2x}{3x} \times 90 }\\

\sf{\implies a = 2 \times 30 = 60 }\\

→ a + b = 90

→ 60 + b = 90

→ b = 30 °

Putting value in Sin a and sin B -

 \implies \:  \frac{ \sin(a) }{ \sin(b) } =  \frac{ \sin(60) }{  \sin(30)  }   \\

 \implies \:   \sin 60=  \frac{ \sqrt{3} }{  2  }   \\

 \implies \:   \sin 30=  \frac{ 1 }{  2  }   \\

Putting these values in ratio -

 \implies \:  \frac{ \sin(a) }{ \sin(b) }  =  \frac{ \frac{ \sqrt{3} }{2} }{ \frac{1}{2} }    \\

 \implies \:  \frac{ \sin(a) }{ \sin(b) } = \frac{ \sqrt{3} }{2}     \times 2 \\

Sin a : Sin B = 3 : 1

Similar questions