Math, asked by Partiksha185, 11 months ago

If 9p^2+16q^2=25 and 3p+4q=1

Answers

Answered by Anonymous
1

Answer:

9p {}^{2}  + 16q {}^{2}  = 25 \\ (3p + 4q) {}^{2}  - 2 \times 3 p \times 4q  = 25\\ 1 {}^{2}  - 24pq = 25 \\ 24pq =  - 24 \\ pq =  - 1 \\  \\

3p + 4q = 1 \\ 3p + 4 \times ( \frac{ - 1}{p} ) = 1 \\ 3p {}^{2}  - p - 4 = 0 \\ 3p {}^{2}  - 4p +  3p - 4 = 0 \\ (3p - 4)(p + 1) = 0 \\  \: either \:  \: (3p - 4) = 0 =  > p =  \frac{4}{3}  \\ or \:  \: (p + 1) = 0 =  > p =  - 1 \\  \\

and the value of q is

when \:  \: p =  \frac{4}{3}  \:  \: then \: q =  \frac{ - 3}{4}  \\  \\ when \:  \: p  =  - 1 \:  \: then \:  \: q = 1

......xD......,✌️✌️✌️✌️✌️✌️

Answered by anjaliyadavasatudent
0

Answer:

Step-by-step explanation:

9p^2 + 16^2=25

(3p)^2 + (4p)^2 =25 ---(¡)

3p + 4q = 1

4q = 1-3p ---(¡¡)

Now put value of 4q in equation (¡)

(3p)^2 + (1-3p)^2=25

9p^2 + (1)^2 + (3p)^2 - 6p =25

9p^2 + 1 + 9p^2 - 6p =25

18p^2 -6p = 24

18p^2-6p -24 = 0

6(3p^2-1p -4) = 0

3p^2 -1p - 4= 0/6

3p^2 -1p -4 =0

3p^2+3p-4p -4 =0

3p(p+1)-4(p+1)=0

(3p-4) (p+1) =0

3p-4 =0

3p =4

p =4/3 ---(¡¡¡)

p+1=0

P=-1 ---(¡v)

Now put value of both p in equation(ii)

4q = 1-3p

4q = 1-4/3

4q = -1/3

q = -1/12---(v)

4q = 1 - (-1)

4q = 2

q=2/4

q=1/2

Similar questions