If 9x² + y² = 13 and xy = 2, find the value of
(i) 3x + y, (ii) 3x - y.
Answers
• 9x² + y² = 13
• xy = 2
• Value of 3x + y and 3x - y
Formula to be used :-
• (a - b)² = a² + b² - 2ab
• (a + b)² = a² + b² + 2ab
Given that,
• 9x² + y² = 13
• xy = 2
____________________________________________________
Now, find the value of 3x + y.
⟶ ( 3x + y) ²
= (3x)² + y² + 2 × 3x × y
= 9x² + y² + 6xy
(Putting given values)
= 13 + 6 × 2
= 25
⟶ ( 3x + y)² = 25
⟶ 3x +y = √25
⟶ 3x + y = 5
_________________________________________________
Again,
⟶ (3x - y)²
= ( 3x)² - 2 × 3x × y + y²
= 9x² + y² - 6 xy
= 13 - 6 ×2
= 1
⟶ (3x - y)² = 1
⟶ 3x - y = 1
_________________________________________________
Therefore,
Hence , value of 3x + y = 5
Value of 3x - y = 1
Answer:
{ \huge{ \underline{ \underline{ \sf{ \green{GivEn : }}}}}}
GivEn:
• 9x² + y² = 13
• xy = 2
{ \huge{ \underline{ \underline{ \sf{ \green{To \: find :}}}}}}
Tofind:
• Value of 3x + y and 3x - y
Formula to be used :-
• (a - b)² = a² + b² - 2ab
• (a + b)² = a² + b² + 2ab
{ \huge{ \underline{ \underline{ \sf{ \green{SoluTion : }}}}}}
SoluTion:
Given that,
• 9x² + y² = 13
• xy = 2
____________________________________________________
Now, find the value of 3x + y.
⟶ ( 3x + y) ²
= (3x)² + y² + 2 × 3x × y
= 9x² + y² + 6xy
(Putting given values)
= 13 + 6 × 2
= 25
⟶ ( 3x + y)² = 25
⟶ 3x +y = √25
⟶ 3x + y = 5
_________________________________________________
Again,
⟶ (3x - y)²
= ( 3x)² - 2 × 3x × y + y²
= 9x² + y² - 6 xy
= 13 - 6 ×2
= 1
⟶ (3x - y)² = 1
⟶ 3x - y = 1
_________________________________________________
Therefore,
Hence , value of 3x + y = 5
Value of 3x - y = 1