Math, asked by itssme3879, 10 months ago

If 9y² + 1/y² =3 then find the value of 27y³ + 1/y³

Answers

Answered by ravikantsharmagaheli
3

Step-by-step explanation:

hope it will help thankful

Attachments:
Answered by muscardinus
0

The value of 27y^3+\dfrac{1}{y^3} is equal to 0.

Step-by-step explanation:

Given that,

9y^2+\dfrac{1}{y^2}=3........(1)

Using (a+b)^2 in (3y+\dfrac{1}{4})^2, so,

(3y+\dfrac{1}{y})^2=9y^2+\dfrac{1}{y^2}+2\times 3y\times \dfrac{1}{y}\\\\(3y+\dfrac{1}{y})^2=9y^2+\dfrac{1}{y^2}+6

Using equation (1) in above equation as :

(3y+\dfrac{1}{y})^2=9y^2+\dfrac{1}{y^2}+6\\\\(3y+\dfrac{1}{y})^2=3+6\\\\3y+\dfrac{1}{y}=3..................(2)  

The formula of (a+b)^3 is :

(a+b)^3=a^3+b^3+3ab(a+b)\\\\(3y+\dfrac{1}{y})^3=(3y)^3+(\dfrac{1}{y})^3+3\times 3y\times \dfrac{1}{y}(3y+\dfrac{1}{y})

Using equation (2) in above equation :

(3y+\dfrac{1}{y})^3=(3y)^3+(\dfrac{1}{y})^3+3\times 3y\times \dfrac{1}{y}(3y+\dfrac{1}{y})\\\\3^3=(3y)^3+(\dfrac{1}{y})^3+27\\\\27y^3+\dfrac{1}{y^3}=0

So, the value of 27y^3+\dfrac{1}{y^3} is equal to 0.

Learn more,

Algebra

Similar questions