If A={0,1} B={2,3,4} and C ={3,5} then verify A× (BuC)=(A×B)u(A×C)
Solution :
Answers
Step-by-step explanation:
Given :-
A = {0,1}
B = {2,3,4}
C = {3,5}
To find :-
Verify that A× (BUC)=(A×B)U(A×C) .
Solution :-
Given sets are :
A = {0,1}
B = {2,3,4}
C = {3,5}
I) A×(BUC):-
BUC = {2,3,4} U {3,5}
=> BUC = { 2,3,4,5}
Now,
A×(BUC) = {0,1} × { 2,3,4,5}
=> {(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)}
A×(BUC) ={(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)} -----------(1)
II) (A×B)U(A×C) :-
A×B = {0,1} × { 2,3,4}
=> {(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)}
and
A×C = {0,1} × {3,5}
=> {(0,3),(0,5)(1,3),(1,5)}
Now,
(A×B) U(A×C)
=> {(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)} U {(0,3),(0,5)(1,3),(1,5)}
=> {(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)} ------(2)
From (1)&(2)
A×(BUC) = (A×B) U(A×C)
Hence, Proved.
Anwer:-
A× (BUC)=(A×B)U(A×C)
Used formulae:-
→ AUB is the set of all elements either in A or in B or in both A and B.
→ A×B is the set of all order pairs in which first element belongs to A and second element belongs to B.