Math, asked by asmitamukane2003, 9 months ago

If A=[0 2x-3 x+2 0] is a skew - symmetric matrix then x is equal to:

Answers

Answered by MaheswariS
6

\textbf{Given:}

A=\left(\begin{array}{cc}0&2x-3\\x+2&0\end{array}\right)\;\text{is skew symmetric}

\textbf{To find:}

\text{The value of x}

\textbf{Solution:}

\text{We know that,}

\text{A square matrix A is said to be skew symmetric}

\text{if $A=-A^T$}

\text{Since A is skew symmetric, we have}

\left(\begin{array}{cc}0&2x-3\\x+2&0\end{array}\right)=-\left(\begin{array}{cc}0&2x-3\\x+2&0\end{array}\right)^T

\left(\begin{array}{cc}0&2x-3\\x+2&0\end{array}\right)=-\left(\begin{array}{cc}0&x+2\\2x-3&0\end{array}\right)

\left(\begin{array}{cc}0&2x-3\\x+2&0\end{array}\right)=\left(\begin{array}{cc}0&-x-2\\-2x+3&0\end{array}\right)

\text{Equating corresponding elements on bothsides, we get}

-2x+3=x+2

-2x-x=2-3

-3x=-1

3x=1

\implies\boxed{\bf\,x=\dfrac{1}{3}}

\textbf{Answer:}

\text{The value of x is $\bf\dfrac{1}{3}$}

Find more:

If A is square matrix, then which of the following is not true ? OPTIONS --- 1) AA' is symmetric 2) A-A' is skew symmetric. 3) A square is symmetric 4) A+A' is symmetric​

https://brainly.in/question/12630673

https://brainly.in/question/7909906

Similar questions