Math, asked by aadityavyas7626, 10 months ago

If A (0,5), B(6,11) C (10,7)are vertices of a triangle ABC .D and E are midpoints of AB and AC respectivelly. Then find the area of Triangle ADE

Answers

Answered by Rohit18Bhadauria
6

Answer:

6 units

Given

  • A ΔABC with coordinate of vertices A(0,5), B(6,11) and C(10,7)
  • D and E are midpoints of AB and AC respectively

To Find:

  • Area of ΔADE

\rule{200}{2}

Mid-Point Formula

\setlength{\unitlength}{0.9 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5.5}}\put(5.6,5.9){$P$}\put(11.7,5.9){$Q$}\put(5.4,5.5){$(x_1\,,\,y_1)$}\put(11.4,5.5){$(x_2\,,\,y_2)$}\put(8.5,6){\circle*{0.2}}\put(8.3,6.3){$R$}\put(8,5.5){$(x\,,\,y)$}\put(7.2,6.3){$1$}\put(9.9,6.3){$1$}\put(11.7,5.9){$Q$}\end{picture}

If R divides the line segment joining points P and Q, internally in the ratio 1 : 1 . i.e., if R is the mid-point of PQ , then

\sf{(x,y)=\bigg(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\bigg)}

\rule{200}{2}

Diagram:

\setlength{\unitlength}{1.05 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,6){\line(2,3){2.52}}\put(11,6){\line(-2,3){2.52}}\put(7.35,8){\line(1,0){2.3}}\put(8.4,9.9){$A$}\put(5.6,5.9){$B$}\put(11.2,5.9){$C$}\put(9.9,7.9){$E$}\put(6.9,7.9){$D$}\put(8.7,9.9){$(0,5)$}\put(5.5,5.5){$(6,11)$}\put(10.7,5.5){$(10,7)$}\put(6,7.9){$(a\,,\,b)$}\put(10.2,7.9){$(c\,,\,d)$}\put(11.2,5.9){$C$}\end{picture}

Solution

Let coordinate D be (a,b) and E be (c,d)

It is given that D and E are the mid-points of AB and AC respectively

So, by applying Mid-Point Formula, we get

\longrightarrow\sf{(a,b)=\bigg(\dfrac{0+6}{2},\dfrac{5+11}{2}\bigg)}

\longrightarrow\sf{(a,b)=\bigg(\dfrac{6}{2},\dfrac{16}{2}\bigg)}

\longrightarrow\sf{(a,b)=(3,8)}

Similarly,

\longrightarrow\sf{(c,d)=\bigg(\dfrac{0+10}{2},\dfrac{5+7}{2}\bigg)}

\longrightarrow\sf{(c,d)=\bigg(\dfrac{10}{2},\dfrac{12}{2}\bigg)}

\longrightarrow\sf{(c,d)=(5,6)}

Now, In ΔABC

Let

  • A(0,5)⇒(x₁,y₁)
  • D(3,8)⇒(x₂,y₂)
  • E(5,6)⇒(x₃,y₃)

Here,

x₁=0, x₂=3, x₃=5

y₁=5, y₂=8, y₃=6

We know that,

\sf{Area\:of\:\triangle=\Bigg|\dfrac{1}{2}\Big(x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})\Big)\Bigg|}

So,

\sf{Area\:of\:\triangle ADE=\dfrac{1}{2}\Bigg|\Big(0(8-6)+3(6-5)+5(5-8)\Big)\Bigg|}

\sf{Area\:of\:\triangle ADE=\Bigg|\dfrac{1}{2}\Big(0+3(1)+5(-3)\Big)\Bigg|}

\sf{Area\:of\:\triangle ADE=\Bigg|\dfrac{1}{2}\Big(3-15\Big)\Bigg|}

\sf{Area\:of\:\triangle ADE=\Bigg|\dfrac{1}{2}\Big(-12\Big)\Bigg|}

\sf{Area\:of\:\triangle ADE=\mid-6\mid}

\sf\pink{Area\:of\:\triangle ADE=6}, Because modulus always give absolute value and also area of triangle cannot be negative.

Hence, Area of ΔADE= 6units

Similar questions