Math, asked by purusottamgiri1972, 11 months ago

if (a,0) (b,0) (1,1) are these three points in a line than find the value of 1/a + 1/b = ?​

Answers

Answered by MaheswariS
1

\textbf{Given points are}

(a,0),\;(0,b)\;\text{and}\;(1,1)

\text{First we find the equation of the line joining (a,0) and (0,b)}

\text{The equation of the line joining (a,0) and (0,b) is}

\displaystyle\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}

\displaystyle\frac{y-0}{b-0}=\frac{x-a}{0-a}

 

\displaystyle\frac{y}{b}=\frac{x-a}{-a}

\displaystyle\;-ay=bx-ab

\implies\displaystyle\bf\;bx+ay=ab

\text{Since the points (a,0) (0,b) (1,1) are collinear,}

\text{(1,1) will lie on the line $bx+ay=ab$}

\implies\,b(1)+a(1)=ab

\implies\,b+a=ab

\text{Divide both sides by ab, we get}

\frac{b}{ab}+\frac{a}{ab}=\frac{ab}{ab}

\implies\bf\frac{1}{a}+\frac{1}{b}=1

\therefore\textbf{The value of $\bf\frac{1}{a}+\frac{1}{b}$ is 1}

Find more:

K का मान ज्ञात कीजिए यदि बिंदु a (2,3) b (4,k)c (6, - 3)संरेखी है हिंदी मीडियम

https://brainly.in/question/14026592

Similar questions