Math, asked by Nikita169, 9 months ago

If A= (001, 010, 100) then A^4 is equal to

1) A
2) 2A
3) I
4) 4A

Attachments:

Answers

Answered by narayanaditya378
9

Answer:

2) 2A is your answer

Step-by-step explanation:

please press vote

Answered by John242
0

Given matrix  A = \begin{bmatrix}0 & 0 & 1\\ 0 & 1 & 0\\  1&  0& 0\end{bmatrix}

We need to find the matrix A^4

What is the matrix?

A matrix is a rectangular array or table with rows and columns of numbers, symbols, or expressions that is used to represent a mathematical object or an attribute of one. is a matrix having two rows and three columns, for instance.

Now A^4=A^2 \times A^2

Now we find A^2=\begin{bmatrix}0 & 0 & 1\\ 0 & 1 & 0\\  1&  0& 0\end{bmatrix} \times \begin{bmatrix}0 & 0 & 1\\ 0 & 1 & 0\\  1&  0& 0\end{bmatrix}

\Rughtarrow A^2 = \begin{bmatrix}1+0+0 & 0+0+0 & 0+0+0\\ 0+0+0 & 0+1+0 & 0+0+0\\  0+0+1&  0+0+0& 0+0+0\end{bmatrix}

\therefore A^2 = \begin{bmatrix}1 & 0 & 0\\ 0 &1 & 0\\  0&  0& 1\end{bmatrix}

\therefore A^2 =I

Now, A^4=A^2 \times A^2

\Rightarrow A^4=I \times I\\\Rightarrow A^4=I

\therefore A^4 = \begin{bmatrix}1 & 0 & 0\\ 0 &1 & 0\\  0&  0& 1\end{bmatrix}

Hence, the required answer is the identity matrix of 3 \times 3 .

To learn more about matrix from the given link

https://brainly.in/question/8398908

#SPJ2

Similar questions