Math, asked by jaivardhanjakhar, 4 days ago

if A= [1/0=0/1] find A^2-A​

Answers

Answered by AZDJKHKLZDHLJ
1

Answer:

(1/0=0/1)

Step-by-step explanation:

(1/0=0/1) ^2 - (1/0=0/1)

(1/0=0/1)

Answered by MathCracker
8

Appropriate Question :-

If  \begin{gathered} \rm A   = \begin{bmatrix} 1& 0  \\ 0 & 1 \end{bmatrix} \end{gathered} find A² - A

Answer :-

 \rm{A {}^{2}  - A = 0}

Step by step explanation :-

We know that,

➦ A² = A × A

Now, Firstly we find A²

\small\rm:\longmapsto{\begin{gathered} \rm A²   = \begin{bmatrix} 1& 0  \\ 0 & 1 \end{bmatrix} \end{gathered} \times \begin{gathered}\begin{bmatrix} 1& 0  \\ 0 & 1 \end{bmatrix} \end{gathered} }

Let's learn,

  • How to multiply matrix 2×2

\small\rm{A × B = \begin{gathered} \rm  \begin{bmatrix}  \rm a&  \rm b  \\ \rm c & \rm d \end{bmatrix} \times  \begin{gathered} \rm \begin{bmatrix} \rm e& \rm f \\ \rm g & \rm h \end{bmatrix} \end{gathered} \end{gathered} = \begin{gathered} \rm  \begin{bmatrix} \rm ae + bg & \rm af + bh\\ \rm ce + dg&\rm cf + dh \end{bmatrix} \end{gathered}}

Now,

\small\rm:\longmapsto{A² =\begin{gathered} \begin{bmatrix} (1 \times 1) + (0 \times 0)& (1 \times 0) + (0 \times 1)  \\ (0 \times 1) + (1 \times 0) & (0 \times 0) + (1 \times 1) \end{bmatrix} \end{gathered} } \\  \\ \small\rm:\longmapsto{A² =\begin{gathered} \begin{bmatrix} 1 + 0& 0 + 0  \\ 0 + 0 & 0 + 1 \end{bmatrix} \end{gathered} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\rm:\longmapsto \red{A² =\begin{gathered} \begin{bmatrix} 1& 0  \\ 0 & 1 \end{bmatrix} \end{gathered} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, we find A² - A

And, we have

\small\rm:\longmapsto \orange{A² =\begin{gathered} \begin{bmatrix} 1& 0  \\ 0 & 1 \end{bmatrix} \end{gathered} }

Let's learn,

  • How to subtract matrix

\small\rm{A  -  B = \begin{gathered} \rm  \begin{bmatrix}  \rm a&  \rm b  \\ \rm c & \rm d \end{bmatrix}  -   \begin{gathered} \rm \begin{bmatrix} \rm e& \rm f \\ \rm g & \rm h \end{bmatrix} \end{gathered} \end{gathered} = \begin{gathered} \rm  \begin{bmatrix} \rm a - e  & \rm b - f\\ \rm c - g&\rm d - h \end{bmatrix} \end{gathered}}

We have to find

\rm:\longmapsto{A² - A = \begin{gathered} \rm \begin{bmatrix} 1 - 1& 0  -0 \\ 0  - 0& 1  - 1\end{bmatrix} \end{gathered} } \\  \\ \rm:\longmapsto \red{A² - A = \begin{gathered} \rm \begin{bmatrix} 0& 0  \\ 0 & 0 \end{bmatrix} \end{gathered} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

\rm:\longmapsto{A² - A = 0}

Where,

  • 0 is the null matrix.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions