Math, asked by tapanpatel662, 1 day ago

If A= [ 1 0 0 , 5 1 0 , 1 3 1] then find matrix B such that AB = I . verify that BA = I .

Answers

Answered by XxLUCYxX
7

If A= [ 1 0 0 , 5 1 0 , 1 3 1] then find matrix B such that AB = I . verify that BA = I .

Attachments:
Answered by aishwaryahk
2

Answer:

If AB = I then B = A^{-1} which is inverse of A

Therefore matrix B =A^{-1}

B=A^{-1} =\left[\begin{array}{ccc}1&0&0\\-5&1&0\\14&-3&1\end{array}\right]

since A has the inverse AB = BA= I

Step-by-step explanation:

If A is a square matrix of order m and B is a square matrix of same order m such that AB = BA = I then Matrix B is called inverse of Matrix A

given that AB = I therefore B =  A^{-1}

To find inverse of A by elementary operation,

In order to use elementary row operation we may write A=IA

\left[\begin{array}{ccc}1&0&0\\5&1&0\\1&3&1\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] A(applying R_{2}R_{2} -5R_{1})

\left[\begin{array}{ccc}1&0&0\\0&1&0\\1&3&1\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\-5&1&0\\0&0&1\end{array}\right] A(applyingR_{3}R_{3} -R_{1})

\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&3&1\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\-5&1&0\\-1&0&1\end{array}\right] A(applyingR_{3}R_{3} -3R_{2})

\\\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\-5&1&0\\14&-3&1\end{array}\right] A\\

Hence

B=A^{-1} =\left[\begin{array}{ccc}1&0&0\\-5&1&0\\14&-3&1\end{array}\right]

To verify BA = I,

consider

BA=\left[\begin{array}{ccc}1&0&0\\-5&1&0\\14&-3&1\end{array}\right]\left[\begin{array}{ccc}1&0&0\\5&1&0\\1&3&1\end{array}\right]

      =\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

      =I

Hence BA = I

     

Similar questions