If a= 1/1+√2 then find the value of a³+2a²-3a+5
Answers
Answered by
0
Answer :
a³ + 2a² - 3a + 5 = 7 - 2√5
Solution :
- Given : a = 1/(1 + √2)
- To find : a³ + 2a² - 3a + 5 = ?
We have ;
=> a = 1/(1 + √2)
=> a = 1/(√2 + 1)
Now ,
Rationalising the denominator of the term in RHS , we have ;
=> a = (√2 - 1)/(√2 + 1)(√2 - 1)
=> a = (√2 - 1)/[ (√2)² - 1² ]
=> a = (√2 - 1)/(2 - 1)
=> a = (√2 - 1)/1
=> a = √2 - 1
=> a + 1 = √2
Now ,
Squaring both the sides , we have ;
=> (a + 1)² = (√2)²
=> a² + 2a + 1 = 2
=> a² + 2a + 1 - 2 = 0
=> a² + 2a - 1 = 0
Now ,
=> a³ + 2a² - 3a + 5 = a³ + 2a² - a - 2a + 5
=> a³ + 2a² - 3a + 5 = a(a² + 2a - 1) - 2a + 5
=> a³ + 2a² - 3a + 5 = a•0 - 2a + 5
=> a³ + 2a² - 3a + 5 = 0 - 2(√2 - 1) + 5
=> a³ + 2a² - 3a + 5 = -2√2 + 2 + 5
=> a³ + 2a² - 3a + 5 = 7 - 2√5
Hence ,
a³ + 2a² - 3a + 5 = 7 - 2√5
Similar questions