Math, asked by champusingh, 2 days ago

If A (1, -1), B( -4, 6)and C (1, 6) are the vertices of ΔABC, then the coordinatesof its circumcentre is

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

refer the reference diagram uploaded above

Step-by-step explanation:

to \: find :  \\ coordinates \: of \: circumcentre \\ of \: ΔABC \\  \\ so \: let \: here \: O \: be \: the \: circumcentre \\ of \: ΔABC \\ such \: that \\ O = (x,y) \\  \\ so \: let \: here \\ slope \: of \: AB \:b e \: m1 \: and \\ that \: of \: OP \: be \: m2 \\  \\ so \: we \: have \\ slope \: of \: AB =  \frac{y2 - y1}{x2 - x1}  \\  \\  =  \frac{6 - ( - 1)}{ - 4 - 1}  \\  \\  =  \frac{6 + 1}{ - 5}  \\  \\  =  \frac{ - 7}{5}  \\  \\ but \: here \:  \\ ∵AB \: ⊥ \: OP \\  \\ m1 \times m2 =  - 1 \\  \\  \frac{ - 7}{5}  \times m2 =  - 1 \\  \\ m2 =  \frac{5}{7}

moreover \: since \:  \\ P \: is \: midpoint \: of \: AB \\  \\ by \: midpoint \: formula \\ we \: have \\  \\ P = ( \frac{x1 + x2}{2}  \: , \:  \frac{y1 + y2}{2}  \: ) \\  \\  =  \frac{1 - 4}{2}  \: , \:  \frac{6 - 1}{2}  \\  \\ P = ( \frac{ - 3}{2}  \:  ,\:  \frac{5}{2}  \: )

now \: we \: have \\ slope \: intercept \: equation \: of \:  \\ any \: straight \: line \\ is \: given \: by \\  \\ y - y1 = m(x - x1) \\  \\ so \: then \\ equation \: of \: OP \: is \\  \\ y -  \frac{3}{2}  =  \frac{5}{7} (x +  \frac{3}{2} ) \\  \\  \frac{2y - 3}{2}  =  \frac{5}{7}  ( \frac{2x + 3}{2} ) \\  \\ 7(2y - 5) =5( 2x + 3) \\  \\ 14y - 35 = 10x + 15 \\  \\ 10x - 14y =  - 50 \\  \\ 5x - 7y =  - 25 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

similarly \: then  \:  \:  let  \\ \: slope \: of \: AC \: be \: a \: and \: that \: of \\ OR\:  \: be \: b \\  \\ slope \: of \: AC =  \frac{y2 - y1}{x2 - x1}  \\  \\  =  \frac{6 - ( - 1)}{1 - 1}  \\  \\  =  \frac{6 + 1}{0}  \\  \\   a=  \frac{7}{0}

now \: since \\ AC \: ⊥ \: OR \\  \\ a  \times b =  - 1 \\  \\  \frac{7}{0}  \times b =  - 1 \\  \\ 7b = 0 \\  \\ b = 0

so \: accordingly \\ as \: here \\ R \: is \: midpoint \: of \: AC \\  \\ R = ( \frac{y1 + y2}{2} ) \\  \\  =  \frac{6 - 1}{2}  \\  \\  R = y1=  \frac{5}{2}  \\  \\ so \: we \: have \\ y - y1 = m(x - x1) \\  \\ y -  \frac{5}{2}  = 0(x - x1)  \\  \\ y -  \frac{5}{2}  = 0 \\  \\ y =  \frac{5}{2}  \:  \:  \:  \:  \:  \:  \:

substituting \: value \: of \:  \: y \: in \: (1) \\ we \: get \\  \\ x =  \frac{ -3}{ 2}  \\  \\ henceforth \: here \\ \\  O = ( \frac{ - 3}{2} \:  , \:  \frac{5}{2} \: )  \\

Attachments:
Similar questions