Math, asked by sushanthJonas, 6 months ago


If A=-1 -2 -2
2 1 -2
2 -2 1
then show that the adjoint of A is 3A'. Find A-1

Answers

Answered by mantu9000
11

We have:

A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

We have to show that adjoint of A = 3A'.

Also, find A^{-1}.

Solution:

A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

[A] = - 1(1 - 4) + 2(2 + 4) - 2( - 4 - 2)

    = 3 + 12 + 12 = 27 ≠ 0, A^{'} exists.

Adjoint of A=\left[\begin{array}{ccc}-3&-6&-6\\6&3&-6\\-6&-6&3\end{array}\right]^'

∴ Adjoint of A=\left[\begin{array}{ccc}-3&6&6\\-6&3&-6\\-6&-6&3\end{array}\right]

A^{'} =\left[\begin{array}{ccc}-1&2&2\\-2&1&-2\\-2&-2&1\end{array}\right]

3A^{'} =\left[\begin{array}{ccc}-3&6&6\\-6&3&-6\\-6&-6&3\end{array}\right]

Thus, adjoint of A = 3A' = \left[\begin{array}{ccc}-3&6&6\\-6&3&-6\\-6&-6&3\end{array}\right], shown.

We know that:

A^{-1} =\dfrac{1}{[A]} (Adj A)

A^{-1} =\dfrac{1}{9} \left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

A^{-1} =\dfrac{1}{9} \left[\begin{array}{ccc}\dfrac{-1}{9}&\dfrac{-2}{9}&\dfrac{-2}{9}\\\dfrac{2}{9}&\dfrac{1}{9}&\dfrac{-2}{9}\\\dfrac{2}{9}&\dfrac{-2}{9}&\dfrac{1}{9}\end{array}\right]

∴   A^{-1} =\dfrac{1}{9} \left[\begin{array}{ccc}\dfrac{-1}{9}&\dfrac{-2}{9}&\dfrac{-2}{9}\\\dfrac{2}{9}&\dfrac{1}{9}&\dfrac{-2}{9}\\\dfrac{2}{9}&\dfrac{-2}{9}&\dfrac{1}{9}\end{array}\right]

Answered by amitnrw
12

Given :  A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

To Find : Show that Adj(A) = 3A'

Find A⁻¹

Solution:

A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

A' is  Transpose of A

A'=\left[\begin{array}{ccc}-1&2&2\\-2&1&-2\\-2&-2&1\end{array}\right]

A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

| A |  =  -1 (1 - 4) + 2( 2 + 4)  - 2 ( - 4 - 2)

= 3 + 12 + 12

= 27

A=\left[\begin{array}{ccc}-1&-2&-2\\2&1&-2\\2&-2&1\end{array}\right]

Adj A=\left[\begin{array}{ccc}C_{11}&C_{21}&C_{31}\\C_{12}&C_{22}&C_{32}\\C_{13}&C_{231}&C_{33}\end{array}\right]

C₁₁ = (-1)¹⁺¹ (1*1 - (-2)(-2)) = - 3

C₁₂ = (-1)¹⁺² (2*1 - (2)(-2)) = - 6

C₁₃ = (-1)¹⁺³ (2*(-2) - (2)(1)) = - 6

and so on..

Adj A=\left[\begin{array}{ccc}-3&6&6\\-6&3&-6\\-6&-6&3\end{array}\right]

Adj A=3\left[\begin{array}{ccc}-1&2&2\\-2&1&-2\\-2&-2&1\end{array}\right]

Adj A = 3A'

A⁻¹  =( 1/|A| )Adj A  =( 1/27 )3A'

=> A⁻¹  = ( 1/9 )A'

A^{-1}=\dfrac{1}{9}\left[\begin{array}{ccc}-1&2&2\\-2&1&-2\\-2&-2&1\end{array}\right]

A^{-1}=\left[\begin{array}{ccc}-1/9&2/9&2/9\\-2/9&1/9&-2/9\\-2/9&-2/9&1/9\end{array}\right]

Learn More:

Find the inverse of the following matrix by using row elementary ...

https://brainly.in/question/18338344

If a=matrix 2,3,5,-2 write a inverse in terms of a - Brainly.in

https://brainly.in/question/3109606

Similar questions