Math, asked by mustakim30, 5 months ago

If A=[ 1 2 3 ] [ 1 1 5] [2 4 7] inverse by elementary column transformation .​

Answers

Answered by mathdude500
11

\begin{gathered}\sf A=\left[\begin{array}{ccc}1&2&3\\1&1&5\\2&4&7\end{array}\right]\end{gathered}

\displaystyle\longrightarrow  \tt \: Let \:  A  \: = \:  A \: I

\begin{gathered}\sf\left[\begin{array}{ccc} 1\: & 2& 3\: \\1&1&5\\2&4&7\end{array}\right]\end{gathered} \:  =A \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\tt \:  OP \: C_2\displaystyle\longrightarrow  \: C_2 - 2C_1

\begin{gathered}\sf\left[\begin{array}{ccc}1&0&3\\1& - 1&5\\2&0&7\end{array}\right]\end{gathered} = A \begin{gathered}\sf\left[\begin{array}{ccc}1& - 2&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\tt \:  OP \: C_3\displaystyle\longrightarrow  \: C_3 - 3C_1

 \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\1& - 1&2\\2&0&1\end{array}\right]\end{gathered} = A \begin{gathered}\sf\left[\begin{array}{ccc}1& - 2& - 3\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\tt \:  OP \: C_2\displaystyle\longrightarrow  \: ( - 1) C_2

 \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\1&  1&2\\2&0&1\end{array}\right]\end{gathered} = A \begin{gathered}\sf\left[\begin{array}{ccc}1&  2& - 3\\0& - 1&0\\0&0&1\end{array}\right]\end{gathered}

\tt \:  OP \: C_1\displaystyle\longrightarrow  \: C_1   -  C_2  \:   \tt \: and \:  \tt \:  OP \: C_3\displaystyle\longrightarrow  \: C_3   -  2C_2

 \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&  1&0\\2&0&1\end{array}\right]\end{gathered} = A \begin{gathered}\sf\left[\begin{array}{ccc} - 1&  2& - 7\\1& - 1&2\\0&0&1\end{array}\right]\end{gathered}

\tt \:  OP \: C_1\displaystyle\longrightarrow  \: C_1 - 2C_3

 \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&  1&0\\0&0&1\end{array}\right]\end{gathered} = A \begin{gathered}\sf\left[\begin{array}{ccc} 13&  2& - 7\\ - 3& - 1&2\\ - 2&0&1\end{array}\right]\end{gathered}

\bf\implies \: {A}^{ - 1}  = \begin{gathered}\sf\left[\begin{array}{ccc} 13&  2& - 7\\ - 3& - 1&2\\ - 2&0&1\end{array}\right]\end{gathered}

Answered by shafeekansari52
0

Answer:

right answer is mach the book

Similar questions