IF A=(1,2,3,4,5) B = (1,2,3) and C= (5,6) then verify n (AUBUC)+n(ANB)+n(BNC)+n(CNA) = n(a)+n(b)+n(c)+n(AUBUC)
Answers
Hi ,
It is given that ,
1 ) A = { 4 ,5 , 6 }
n( A ) = 3 ,
B = { 5 ,6 , 7 , 8 }
n( B ) = 4 ,
C = { 6 , 7 , 8 , 9 }
n( C ) = 4 ,
A n B = { 4 ,5 , 6 } n { 5 ,6 , 7 , 8 } = { 5 , 6 }
n( A n B ) = 2 ,
B n C = { 5,6,7,8 } n { 6,7,8,9 } = { 6, 7,8 }
n( B n C ) = 3 ,
C n A = { 6,7,8,9 } n { 4 , 5 , 6 } = { 6 }
n( C n A ) = 1
A n B n C = { 4,5,6 } n { 5,6,7,8 }n{ 6 ,7 , 8 }={ 6 }
n( A n B n C ) = 1 ,
A U B U C = { 4,5,6 } U { 5,6,7,8 } U { 6,7,8 }
= { 4,5,6,7,8 }
n( A U B U C ) = 5 ----( i )
n(A)+n(B)+n(C)-n(AnB)-n(BnC)-n(AnC)+n(AnBnC)
= 3 + 4 + 3 - 2 - 3 - 1 + 1
= 11 - 6
= 5 ---( ii )
from ( i ) and ( ii ) , we conclude that ,
( i ) = ( ii )
2 ) A = { a ,b ,c , d , e }
n( A ) = 5 ,
B = { x , y , z }
n( B ) = 3 ,
C = { a , e , x }
n( C ) = 3 ,
A n B = { a,b,c,d,e } n { x , y , z }= { }
n( A n B ) = 0
B n C = { x,y,z } n { a ,e , x } = { x }
n( B n C ) = 1 ,
A n C = { a,b,c,d,e } n { a,e,x } = { a , e }
n( A n C ) = 2 ,
A n B n C = { a,b,c,d,e }n{x,y,z } n { a,e,x }
= { }
n( A n B n C ) = 0
A U B U C = { a,b,c,d,e } U { x,y,z } U { a,e,x }
= { a,b,c,d,e,x ,y,z }
n( A U B U C ) = 8 ---( iii )
n(A)+n(B)+n(C)-n(AnB)-n(BnC)-n(AnC)+n(AnBnC)
= 5 + 3 + 3 - 0 - 1 - 2 + 0
= 11 - 3
= 8 -------( iv )
from ( iii ) and ( iv ) ,
( iii ) = ( iv )
I hope this helps you.
: )
Answer:
n(AUBUC)+N(ANB)+(BNC)+nCNA
Step-by-step explanation:
BOTH SIDE ARE EQUAL