Math, asked by AKHILA004, 9 months ago

if A={1,2,3,4} and x,y€A,form the set of all ordered pairs (x,y) such that x is a divisor of y​

Answers

Answered by pulakmath007
33

SOLUTION

GIVEN

 \sf{A =  \{ 1,2,3,4 \}  \:  \: and \:  \:  x, y  \in \: A}

TO DETERMINE

The set of all ordered pairs (x,y) such that x is a divisor of y

CONCEPT TO BE IMPLEMENTED

CARTESIAN PRODUCT

For any two sets A and B, the Cartesian product of A and B is denoted by A × B and defined as

 \sf{A \times B =  \{(x, y) :  x \in A \: , y \in \: B \}}

EVALUATION

Here

 \sf{A =  \{ 1,2,3,4 \}  \:  \: and \:  \:  x, y  \in \: A}

Now we are proceeding to find the set of all ordered pairs (x,y) such that x is a divisor of y

Let S be the required Set

 \sf{Since  \: \:  1  \: divides  \: 1 \:  ,  \: so  \:  \: (1,1)  \in \: S}

 \sf{Since  \: \:  1  \: divides  \: 2 \:  ,  \: so  \:  \: (1,2)  \in \: S}

 \sf{Since  \: \:  1  \: divides  \: 3 \:  ,  \: so  \:  \: (1,3)  \in \: S}

 \sf{Since  \: \:  1  \: divides  \: 4\:  ,  \: so  \:  \: (1,4)  \in \: S}

 \sf{Since  \: \:  2  \: divides  \: 2 \:  ,  \: so  \:  \: (2,2)  \in \: S}

 \sf{Since  \: \:  2  \: divides  \: 4 \:  ,  \: so  \:  \: (2,4)  \in \: S}

 \sf{Since  \: \:  3  \: divides  \: 3 \:  ,  \: so  \:  \: (3,3)  \in \: S}

 \sf{Since  \: \:  4  \: divides  \: 4 \:  ,  \: so  \:  \: (4,4)  \in \: S}

Hence

 \sf{S = \{ (1,1),),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4) \}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let f be a function whose domain is the set of all real number.if f(x) =|x|-x, what is the range of f

https://brainly.in/question/25612186

Similar questions