If A= {1, 2, 3, 4}, B = {0, 7} and C = {4}, then find (A X B) ∪ (A X C).
Answers
Step-by-step explanation:
GIVEN: A = {1,2}, B = { 3,4 }
TO FIND: The subsets of A x B (A cross B)
A x B = { (1,3), (1,4), (2,3), (2,4) }
So, A x B has 4 elements or 4 ordered pairs.
If we represent these elements or ordered pairs as p, q, r, s
S = { p,q,r,s }
Its subsets are
{ p}, { q } , {r} , {s} ,
{ p,q} , { p,r}, {p, s} , { q,r} , { q,s} , { r,s }
{ p, q, r} , { p, r, s} , { q,r,s} , { q, s, p}
{ p, q, r, s} &
Null set
the formula: no of subsets of A x B = 2^n, where n is the number of elements or ordered pairs belonging to A x B
So, the above A x B has 16 subsets
GIVEN:
A = {1,2}, B = { 3,4 }
TO FIND:
The subsets of A x B (A cross B)
A x B = { (1,3), (1,4), (2,3), (2,4) }
So, A x B has 4 elements or 4 ordered pairs.
If we represent these elements or ordered pairs as p, q, r, s
S = { p,q,r,s }
Its subsets are
{ p}, { q } , {r} , {s} ,
{ p,q} , { p,r}, {p, s} , { q,r} , { q,s} , { r,s }
{ p, q, r} , { p, r, s} , { q,r,s} , { q, s, p}
{ p, q, r, s} &
Null set
the formula: no of subsets of A x B = 2^n, where n is the number of elements or ordered pairs belonging to A x B
So, the above A x B has 16 subsets