Math, asked by aroraneetu38, 9 months ago

If a=1+√2+√3 and b= 1+√2-√3 prove that a^2-b^2-2a-2b-8=0​

Answers

Answered by mysticd
8

/* There is a mistake in the question. It must be like this */

 Given \: a = 1 + \sqrt{2} + \sqrt{3}

 \implies a - 1 = \sqrt{2} + \sqrt{3}

/* On squaring both sides, we get */

 \implies (a-1)^{2} = (\sqrt{2} + \sqrt{3} )^{2}

 =( \sqrt{2})^{2} + (\sqrt{3})^{2}+2 \times \sqrt{2} \times \sqrt{3}

 = 2 + 3 + 2\sqrt{6}

 = 5 +2\sqrt{6} \: --(1)

 and  \: b = 1 + \sqrt{2} - \sqrt{3}

 \implies b - 1 = \sqrt{2} -\sqrt{3}

/* On squaring both sides, we get */

 \implies (b-1)^{2} = (\sqrt{2} - \sqrt{3} )^{2}

 =( \sqrt{2})^{2} + (\sqrt{3})^{2}-2 \times \sqrt{2} \times \sqrt{3}

 = 2 + 3 - 2\sqrt{6}

 = 5 - 2\sqrt{6} \: --(2)

 Now , \red{ (a-1)^{2} + (b-1)^{2} }= 5 +2\sqrt{6} +5 -2\sqrt{6}

 \implies a^{2} - 2a + 1 + b^{2} - 2b + 1 = 10

 \implies a^{2} - 2a  + b^{2} - 2b + 2-10=0

 \implies \green { a^{2}   + b^{2}-2a - 2b -8 =0}

•••♪

Similar questions