Math, asked by shm0618516payal, 1 month ago

If a =
1/2-√3

and b = 1/2+√3

then find a2+ab+b2​

Answers

Answered by Hrindan
3

Answer:

a = (1 \div 2 -  \sqrt{3} ) \\ b = (1 \div 2 +  \sqrt{3} ) \\  \\  {a}^{2} + ab +  {b}^{2}  \\  =  {a}^{2}  + 2ab +  {b}^{2}  - ab \\  =  {(a + b)}^{2}  - ab \\  =  {(1 \div 2  -  \sqrt{3}  + 1 \div 2 +  \sqrt{3} )}^{2}  - ((1 \div 2 -  \sqrt{3} )(1 \div 2 +  \sqrt{3} )) \\  =  {1}^{2}  - (1 \div 4 - 3) \\  = 1 - ( - 11 \div 4) \\  = 1 + 11 \div 4 \\  = 15 \div 4 \\  = 3 \times \frac{3}{4}

Answered by diwanamrmznu
2

given

a =  \frac{1}{2 -  \sqrt{3} } \\  \\ b =  \frac{1}{2 +  \sqrt{3} }  \\  \\

-----(1)

to find

a {}^{2} +  ab + b {}^{2}

----------(2)

solution=>

EQ 1 value put eq 2

 =( \frac{1}{2 -  \sqrt{3} })  {}^{2} +  \frac{1}{(2 -  \sqrt{3})(2 +  \sqrt{3})  }   + ( \frac{1}{2 +  \sqrt{3} })  {}^{2}  \\  \\  =  \frac{1}{(2 -   \sqrt{3})  {}^{2}  }  +   \frac{1}{2 {}^{2} - ( \sqrt{3} ) {}^{2}  }  +  \frac{1}{(2 +  \sqrt{3})  {}^{2} }   \\  \\  =  \frac{1}{4 + 3 - 4 \sqrt{3} } +  1 +  \frac{1}{4 + 3 + 4 \sqrt{3} }   \\  \\  =  \frac{1}{7 - 4 \sqrt{3} }  +  \frac{1}{7 + 4 \sqrt{3} }   + 1 \\  \\  =  \frac{14}{49 - 48}  + 1 \\  \\  = 14 + 1 = 15

-------------------------------------------

formula uses

(a + b) {}^{2}  = a {}^{2} +  b {}^{2} + 2 ab \\  \\  = (a {}^{} -  b) {}^{2} =  a {}^{2} +  b {}^{2}  - 2ab \\  \\ (a {}^{} +  b)(a - b) = a {}^{2} -  b {}^{2}

I hope it helps you

Similar questions