Math, asked by subobbz1, 4 months ago

If A = (1, 2, 3) and B= (5, 6), then find (AXB) and (B x A).​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{A=\{1,2,3\}}

\mathsf{B=\{5,6\}}

\textbf{To find:}

\mathsf{A\,{\times}\,B\;and\;B\,{\times}\,A}

\textbf{Solution:}

\textbf{Cartesian product:}

\textsf{Let A and B any two sets. Then the Cartesian product of A and B}

\textsf{is defined as}

\bf\,A\,{\times}\,B=\{(a,b)|\;a\in\,A,\;b\in\,B\}

\mathsf{Then}

\mathsf{A\,{\times}\,B=\{(1,5),(1,6),(2,5),(2,6),(3,5),(3,6)\}}

\mathsf{and}

\mathsf{B\,{\times}\,A=\{(5,1),(5,2),(5,3),(6,1),(6,2),(6,3)\}}

\textsf{It is clear that}

\mathsf{A\,{\times}\,B\,\neq\,B\,{\times}\,A}

Answered by mahek77777
17

\textbf{Given:}

\mathsf{A=\{1,2,3\}}

\mathsf{B=\{5,6\}}

\textbf{To find:}

\mathsf{A\,{\times}\,B\;and\;B\,{\times}\,A}

\textbf{Solution:}

\textbf{Cartesian product:}

\textsf{Let A and B any two sets. Then the Cartesian product of A and B}

\textsf{is defined as}

\bf\,A\,{\times}\,B=\{(a,b)|\;a\in\,A,\;b\in\,B\}

\mathsf{Then}

\mathsf{A\,{\times}\,B=\{(1,5),(1,6),(2,5),(2,6),(3,5),(3,6)\}}

\mathsf{and}

\mathsf{B\,{\times}\,A=\{(5,1),(5,2),(5,3),(6,1),(6,2),(6,3)\}}

\textsf{It is clear that}

\mathsf{A\,{\times}\,B\,\neq\,B\,{\times}\,A}

Similar questions