Math, asked by arunakeerthana83, 7 months ago

. If A = {1, 2, 3}, B = (3, 4, 5} then
ΑΔ Β =
[
A) {0} B) {1, 2} C) {7} D) none
frnds here delta means what ?
llzzz answer i will mark u as brainlist and i will follow u back​

Answers

Answered by jasonfrancis1811420
1

Answer:

Here,

AB=  

(5+1)  

2

+(0−2)  

2

+(−6+3)  

2

 

​  

=  

49

​  

=7

AC=  

(0+1)  

2

+(4−2)  

2

+(1+3)  

2

 

​  

=  

9

​  

=3

​  

 

by geometry , the bisector of∠BAC

will divide the side BC in the ration AB:AC i.e.,in the ratio 7:3 internally .Let the bisector of ∠BAC , meets the side BC at point D.

Therefore,D divides BC in the ratio 7:3

coordinates of D are  

(  

7+3

7×0+3×5

​  

,  

7+3

7×4+3×0

​  

,  

7+3

7×(−1)+3×(−6)

​  

)

(  

2

3

​  

,  

5

14

​  

,−  

3

5

​  

)

​  

 

Therefore, direction ratio of the bisector AD are  

2

3

​  

−(−1),  

5

14

​  

−2,  

2

−5

​  

+3i.e.  

2

5

​  

,  

5

4

​  

,  

2

1

​  

 

Hence , direction cosines of the bisector AD are  

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

2

5

​  

 

​  

 

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

5

4

​  

 

​  

 

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

2

1

​  

 

​  

 

714

​  

 

25

​  

,  

714

​  

 

8

​  

,  

714

​  

 

5

​  

 

​  

 

Here,

AB=  

(5+1)  

2

+(0−2)  

2

+(−6+3)  

2

 

​  

=  

49

​  

=7

AC=  

(0+1)  

2

+(4−2)  

2

+(1+3)  

2

 

​  

=  

9

​  

=3

​  

 

by geometry , the bisector of∠BAC

will divide the side BC in the ration AB:AC i.e.,in the ratio 7:3 internally .Let the bisector of ∠BAC , meets the side BC at point D.

Therefore,D divides BC in the ratio 7:3

coordinates of D are  

(  

7+3

7×0+3×5

,  

7+3

7×4+3×0

​  

,  

7+3

7×(−1)+3×(−6)

​  

)

(  

2

3

​  

,  

5

14

​  

,−  

3

5

​  

)

​  

 

Therefore, direction ratio of the bisector AD are  

2

3

​  

−(−1),  

5

14

​  

−2,  

2

−5

​  

+3i.e.  

2

5

​  

,  

5

4

​  

,  

2

1

​  

 

Hence , direction cosines of the bisector AD are  

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

2

5

​  

 

​  

 

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

5

4

​  

 

​  

 

(  

2

5

​  

)  

2

+(  

5

4

​  

)  

2

+(  

2

1

​  

)  

2

 

​  

 

2

1

​  

 

​  

 

714

​  

 

25

​  

,  

714

​  

 

8

​  

,  

714

​  

 

5

​  

 

​  

 

Similar questions