If A = { 1 , 2 , 3 } , B = { 3 , 4 } and C = { 4 , 5 , 6 } then ( A X B ) ∩ ( B X C ) is equal to
a) ( 1 , 4 ) b) ( 3 , 4 ) c) ( 4 , 4 )
Answers
Answer:
b) (3, 4)
Step-by-step explanation:
Given,
A = {1 , 2 , 3}
B = {3 , 4}
C = {4 , 5 , 6}
To Find :-
Value of :-
(A × B) ∩ (B × C)
Solution :-
Finding value of {A × B} :-
= {1 , 2 , 3} × {3 , 4}
We need to consider each and every element of 'A' with each and every element of 'B' as a set :-
= { (1 , 3) , (1 , 4) , (2 , 3) , (2 , 4) , (3 , 3) , (3 , 4) }
∴ {A × B } = { (1 , 3) , (1 , 4) , (2 , 3) , (2 , 4) , (3 , 3) , (3 , 4) }
Finding value of {B × C} :-
= {3 , 4} × {4 , 5 , 6}
We need to consider each and every element of 'B' with each and every element of 'C' as a set :-
= { (3 , 4), (3 , 5) , (3 , 6) , (4 , 4) , (4 , 5) , (4 , 6) }
∴ (B × C) = { (3 , 4), (3 , 5) , (3 , 6) , (4 , 4) , (4 , 5) , (4 , 6) }
(A × B) ∩ (B × C)
= { (1 , 3) , (1 , 4) , (2 , 3) , (2 , 4) , (3 , 3) , (3 , 4) } ∩ { (3 , 4), (3 , 5) , (3 , 6) , (4 , 4) , (4 , 5) , (4 , 6) }
[ ∴ WE need to write the common term in both the sets ]
= {3 , 4}
(A × B) ∩ (B × C) = {3 , 4}
Option 'b'