Math, asked by kunzin6590, 10 months ago

If A={1,2,3}, B={4}, C={5} then verify that:
(1). Ax (B UC) = (AxB)U(AXC) (2). A x(B-C) = (AxB)-(AXC)

Answers

Answered by ashishks1912
7

GIVEN :

The sets are  A={1,2,3}, B={4}, C={5}

TO VERIFY :

(1). A\times (B\cup C) = (A\times B)\cup (A\times C)

(2). A\times (B-C) = (A\times B)-(A\times C)

SOLUTION :

Given sets are A={1,2,3}, B={4}, C={5}

Now verify that

(1). A\times (B\cup C) = (A\times B)\cup (A\times C)

Taking LHS  A\times (B\cup C)

B\cup C={\{4,5}\}

A\times (B\cup C)={\{1,2,3}\}\times {\{4,5}\}

A\times (B\cup C)= {\{ ( 1 , 4 ) , ( 1 , 5 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 3 , 5 ) }\}= LHS

Taking RHS (A\times B)\cup (A\times C)

A\times B= {\{ ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 )}\}

A\times C= {\{ ( 1 , 5 ) , ( 2 , 5 ) , ( 3 , 5 )}\}

(A\times B)\cup (A\times C) {\{ ( 1 , 4 ) , ( 1 , 5 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 3 , 5 ) }\}= RHS

∴ LHS = RHS

A\times (B\cup C) = (A\times B)\cup (A\times C) is verified.

(2). A\times (B-C) = (A\times B)-(A\times C)

Taking LHS  A\times (B-C)

B - C={\{4}\}

A\times (B-C)={\{( 1 , 4 ) , ( 2, 4) , (3, 4)}\}=LHS

Taking RHS (A\times B)-(A\times C)

We know A\times B= {\{ ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 )}\}

A\times C= {\{ ( 1 , 5 ) , ( 2 , 5 ) , ( 3 , 5 )}\}

(A\times B)-(A\times C)={\{ ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 )}\}- {\{ ( 1 , 5 ) , ( 2 , 5 ) , ( 3 , 5 )}\}

(A\times B)-(A\times C)={\{ ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 )}\}=RHS

∴ LHS = RHS

A\times (B-C) = (A\times B)-(A\times C) is verified.

Similar questions