Math, asked by sonamdavar2004, 21 days ago

If A=[1 2 -3. B=[9 -1 2.
-3 7 -8 -4 2 5
0 -6 1] 4 0 -3] then find the matrix c such that A+B+C is zero matrix​

Answers

Answered by LaeeqAhmed
5

\color{red}\huge{\underline{\underline{\bf GIVEN\dag}}}

 \sf {A = \left [\begin{array}{ccc}1&2& - 3 \\  - 3&7& - 8 \\ 0& - 6&1\end{array} \right]}

 \sf {B = \left [\begin{array}{ccc}9& - 1& 2 \\  - 4&2& 5\\ 4& 0& - 3\end{array} \right]}

\color{red}\huge{\underline{\underline{\bf TO\:FIND\dag}}}

 \sf matrix  \: \color{purple}{C }\:  \color{white}{such \: that,}

 \sf {A+B+C=} \it{O}

\sf\purple{here}

\it{O} = \left [\begin{array}{ccc}0&0&0 \\ 0&0&0 \\ 0&0&0\end{array} \right]

 \implies \tiny{ \sf {\left [\begin{array}{ccc}1&2& - 3 \\  - 3&7& - 8 \\ 0& - 6&1\end{array} \right]  +\left [\begin{array}{ccc}9& - 1& 2 \\  - 4&2& 5\\ 4& 0& - 3\end{array} \right] + C = \left [\begin{array}{ccc}0&0&0 \\ 0&0&0 \\ 0&0&0\end{array} \right]}}

 \implies   \tiny{ \sf {\left [\begin{array}{ccc}10&1& - 1 \\  - 7&9& - 3 \\ 4& - 6& - 2\end{array} \right]  + C = \left [\begin{array}{ccc}0&0&0 \\ 0&0&0 \\ 0&0&0\end{array} \right]}}

\implies   \tiny{ \sf C = \left [\begin{array}{ccc}0&0&0 \\ 0&0&0 \\ 0&0&0\end{array} \right] - \sf {\left [\begin{array}{ccc}10&1& - 1 \\  - 7&9& - 3 \\ 4& - 6& - 2\end{array} \right]  }}

 \orange{\therefore   \tiny{  \sf C =  \sf {\left [\begin{array}{ccc}  - 10& - 1&  1 \\  7& - 9&  3 \\  - 4& 6&  2\end{array} \right]  }}}

HOPE IT HELPS!!

Similar questions