Math, asked by devanshi00720, 4 months ago

If a^1/2 = b^1/3 = c^1/4. And abc = 8, what is the value of a?
A. 213
B. 413
C. 31/3
D. 214
E. 212

Answers

Answered by Vaishnavi2107
2

Answer:

213 is the right answer

Step-by-step explanation:

pls mark me as brainliest answer

Answered by ARMyIIAlien
0

Step-by-step explanation:

Answer:

B. 4^{^{\frac{1}{3}}}

3

1

Step-by-step explanation:

Given,

a^{\frac{1}{2}}=b^{\frac{1}{3}}=c^{\frac{1}{4}}a

2

1

=b

3

1

=c

4

1

Now, let \begin{gathered}k = a^{\frac{1}{2}}=b^{\frac{1}{3}}=c^{\frac{1}{4}}\\\end{gathered}

k=a

2

1

=b

3

1

=c

4

1

Consider k = a^{\frac{1}{2}}k=a

2

1

⇒ a = k^2a=k

2

Consider k = b^{\frac{1}{3}}k=b

3

1

⇒ b = k^3b=k

3

Consider k=c^{\frac{1}{4}}k=c

4

1

⇒ c=k^4c=k

4

Now, given that

abc = 8abc=8

⇒ k^{^2}k^{^3}k^{^4}=8k

2

k

3

k

4

=8

⇒ k^{^{2+3+4}}=8k

2+3+4

=8

⇒ k^9=2^3k

9

=2

3

⇒ (k^3)^{^3}=2^3(k

3

)

3

=2

3

⇒ k^3=2k

3

=2

⇒ k = \sqrt[3]{2}k=

3

2

It was stated that a = k²

∴ a = (∛2)² = ∛2² = ∛4 = 4^{^{\frac{1}{3}}}

3

1

(Option B)

Hope it helps!!! Please mark Brainliest!!!

Similar questions