If A(1,-2) B(2,3) C(a,2) D(-4,-3) forms a parellelogram then find the value of a ?
Answers
Answer:
Answer:Given :
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )= > 1 + k / 2 = - 2 / 2
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )= > 1 + k / 2 = - 2 / 2= > 1 + k = - 2
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )= > 1 + k / 2 = - 2 / 2= > 1 + k = - 2= > k = - 3 .
Answer:Given :Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).We know Diagonal of parallelogram bisect each other .Midpoint of AC = mid point of BD= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )= > 1 + k / 2 = - 2 / 2= > 1 + k = - 2= > k = - 3 .Therefore , the value of k is - 3 .
Answer:
Born to be Happy
Not to be Perfect.
Good morning.
Step-by-step explanation:
Given :
Vertices of a parallelogram are A ( 1 , - 2 ) , B ( 2 , 3 ) , C ( k , 2 ) and D ( - 4 , - 3 ).
We know Diagonal of parallelogram bisect each other .
Midpoint of AC = mid point of BD
= > ( 1 + k / 2 , -2 + 2 / 2 ) = ( - 4 + 2 / 2 , - 3 + 3 / 2 )
= > 1 + k / 2 = - 2 / 2
= > 1 + k = - 2
= > k = - 3 .
Therefore , the value of k is - 3 .