Math, asked by khushi120930, 1 year ago

if a = 1-√2 find (a-1/a)^3​

Answers

Answered by Thesoumya123
0

This is the answer. Thank you.

Attachments:
Answered by LovelyG
12

Answer:

\large{\underline{\boxed{\sf (a - \dfrac{1}{a})^3 =8}}}

Step-by-step explanation:

Given that ;

a = 1 - √2

Find the value of 1/a.

 \implies \sf  \frac{1}{a}  =  \frac{1}{1 -  \sqrt{2} }  \\  \\ \implies \sf  \frac{1}{a} =  \frac{1}{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 + \sqrt{2} }  \\  \\ \implies \sf  \frac{1}{a}  =  \frac{1 +  \sqrt{2} }{(1) {}^{2}  - ( \sqrt{2}) {}^{2}  }  \\  \\ \implies \sf  \frac{1}{a}  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\  \\ \implies \sf  \frac{1}{a} =  \frac{1 +  \sqrt{2} }{ - 1}   \\  \\ \implies \sf  \frac{1}{a}  =  - (1 +  \sqrt{2} )

Now, find the value of a + (1/a);

\implies \sf a -  \frac{1}{a} = 1 -  \sqrt{2}  + 1 +  \sqrt{2}  \\  \\ \implies \sf a -  \frac{1}{a} = 1 + 1 \\  \\ \implies \sf a -  \frac{1}{a} = 2

On cubing both sides ;

\implies \sf (a -  \frac{1}{a})^{3} \\  \\ \implies \sf (2) {}^{3}  \\  \\ \implies \sf 8

Hence, the answer is 8.

_______________________

\large{\underline{\underline{\mathfrak{\heartsuit \: Important \: Identities : \: \heartsuit}}}}

  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)² = a² - 2ab + b²
  • (a + b)² = a² + 2ab + b²

Similar questions